## Problems

Assume $V=\mathbb{R}^{M}$ and $W=\mathbb{R}^{N}$ in Prob 1 and Prob 2.

1. Let $\mathcal{E} \in \mathcal{L}\left(V, V^{\prime}\right)$ and $h \in V^{\prime}$.

The Linear Complementarity Problem is to find

$$
\begin{equation*}
\mathbf{z} \in V \text { such that } \mathbf{z} \geq \mathbf{0}, \mathcal{E} \mathbf{z} \geq h,(\mathcal{E} \mathbf{z}-h)(\mathbf{z})=0 \tag{1}
\end{equation*}
$$

(a) Show that (1) is equivalent to a variational inequality,

$$
\begin{equation*}
\mathbf{z} \in K:(\mathcal{E} \mathbf{z}-h)(\mathbf{w}-\mathbf{z}) \geq 0 \text { for all } \mathbf{w} \in K \tag{2}
\end{equation*}
$$

with $K=\{\mathbf{z} \in V: \mathbf{z} \geq \mathbf{0}\}$.
(b) If $\mathcal{E}$ is symmetric and nonnegative $\left(\mathcal{E}=\mathcal{E}^{\prime} \geq 0\right)$, show that a solution $\mathbf{z}$ of (1) is characterized by a minimization problem.
2. Let $\mathcal{A} \in \mathcal{L}\left(V, V^{\prime}\right)$ be symmetric and nonnegative, $f \in V^{\prime}, \mathcal{B} \in \mathcal{L}\left(V, W^{\prime}\right)$, $g \in W^{\prime}$, and set $J(\mathbf{u})=\frac{1}{2} \mathcal{A} \mathbf{u}(\mathbf{u})-f(\mathbf{u}), \mathbf{u} \in V$.
The Constrained Quadratic Problem is to find $\mathbf{x} \in V$ which minimizes $J(\mathbf{u})$ subject to the constraint $\mathcal{B} \mathbf{u} \leq g$. Assume that $\mathcal{B}^{\prime}$ is injective.
Show that a solution x is characterized by the system

$$
\begin{array}{r}
\mathcal{A} \mathbf{x}+\mathcal{B}^{\prime} \mathbf{y}=f \\
\mathcal{B} \mathbf{x}-g \leq 0, \mathbf{y} \geq \mathbf{0},(\mathcal{B} \mathbf{x}-g)(\mathbf{y})=0 \tag{3b}
\end{array}
$$

Hint: Set $K=\{u \in V: \mathcal{B} u-g \leq 0\}$ and show (3) is equivalent to $x \in K:(\mathcal{A} x-f)(u-x) \geq 0$ for all $u \in K$.

Assume that $V$ and $W$ are Hilbert spaces. Let $\mathcal{A} \in \mathcal{L}\left(V, V^{\prime}\right)$ be symmetric and nonnegative, $f \in V^{\prime}, \mathcal{B} \in \mathcal{L}\left(V, W^{\prime}\right)$ have closed range, and $g \in W^{\prime}$. Let the symmetric and positive $\mathcal{C} \in \mathcal{L}\left(W, W^{\prime}\right)$ be the Riesz isomorphism: $\mathcal{C} p(q)=(p, q)_{W}=(\mathcal{C} p, \mathcal{C} q)_{W^{\prime}}$ for all $p, q \in W$.
3. To minimize $\frac{1}{2} \mathcal{A} \mathbf{v}(\mathbf{v})-f(\mathbf{v})$ and approximate the constraint, $\mathcal{B} \mathbf{v}=g$, choose a small $\varepsilon>0$ and minimize

$$
\begin{equation*}
J_{\varepsilon}(\mathbf{v})=\frac{1}{2} \mathcal{A} \mathbf{v}(\mathbf{v})-f(\mathbf{v})+\frac{1}{2 \varepsilon}\|\mathcal{B} \mathbf{v}-g\|_{W^{\prime}}^{2}, \quad \mathbf{v} \in V \tag{4}
\end{equation*}
$$

(a) Show that a minimum is obtained at $\mathbf{u}$ if and only if

$$
\begin{equation*}
\mathbf{u} \in V: \mathcal{A} \mathbf{u}+\frac{1}{\varepsilon} \mathcal{B}^{\prime} \mathcal{C}^{-1}(\mathcal{B} \mathbf{u}-g)=f \text { in } V^{\prime} . \tag{5}
\end{equation*}
$$

This is equivalent to the system

$$
\begin{align*}
\mathbf{u} \in V, p \in W: & \mathcal{A} \mathbf{u}+\mathcal{B}^{\prime} p=f \text { in } V^{\prime},  \tag{6}\\
& \mathcal{B} \mathbf{u}-\varepsilon \mathcal{C} p=g \text { in } W^{\prime} .
\end{align*}
$$

A Lagrangian for the system (6) is

$$
\begin{equation*}
\mathcal{L}(\mathbf{v}, q)=\frac{1}{2} \mathcal{A} \mathbf{v}(\mathbf{v})-f(\mathbf{v})+(\mathcal{B} \mathbf{v}-g) q-\frac{\varepsilon}{2} \mathcal{C} q(q), \mathbf{v} \in V, q \in W \tag{7}
\end{equation*}
$$

(b) Show that stable points of (7) correspond to solutions of the system (6).
(c) Under the additional assumptions of either Theorem 1.9 or Theorem 1.10, compute each of

$$
\bar{\varphi}(v)=\sup _{q \in W} \mathcal{L}(v, q), \quad \underline{\varphi}(q)=\inf _{v \in V} \mathcal{L}(v, q) .
$$

(d) Find the dual problem to (5).
4. The norm on $H^{1 / 2}(\partial G)$ is defined by a constrained minimization problem

$$
\begin{equation*}
\frac{1}{2}\|\mu\|_{\mathbb{B}}^{2}=\inf _{v \in H^{1}(G): \gamma(v)=\mu} \frac{1}{2}\|v\|_{H^{1}(G)}^{2} \tag{8}
\end{equation*}
$$

Characterize this problem with a mixed system and display the dual problem.
5. The Dirichlet-Neumann boundary-value-problem was formulated as a mixed system (6) in two ways.
(a) For the gradient mixed formulation of the Dirichlet-Neumann boundary-value-problem, find the primal and dual problems. (Use Problems above or take case $\mathcal{C}=0$.)
(b) Repeat for the divergence mixed formulation of the Dirichlet-Neumann boundary-value-problem.

