
1 The Stokes’ System

The motion of a (possibly compressible) homogeneous fluid is described by its density
ρ(x, t), pressure p(x, t) and velocity v(x, t). Assume that the fluid is barotropic, i.e., the
density and pressure are related by a state equation

ρ = s(p) (1a)

in which the constitutive function s(·) is non-decreasing and characterizes the type of
fluid. The conservation of mass of fluid is expressed by

ρ̇ + ∇ · (ρv) = ρ g(x) , (1b)

and the conservation of momentum has the form

ρv̇ − (λ1 + µ1)∇(∇ · v)− µ1∆v + ∇p = ρ f(x) in Ω. (1c)

Here f(x) is the mass-distributed force density over Ω and g(x) is the mass-distributed
fluid source. These three nonlinear equations comprise the system for a general com-
pressible fluid.

In order to obtain a linear model to approximate the solutions of this system, we
consider small oscillations about a rest state at which v = 0 and, hence, the functions
ρ0(x) , p0(x) , f(x) , g(x) satisfy

ρ0 = s(p0) , g(x) = 0, ∇p0 = ρ0 f(x) .

The quantity c0(x) ≡ 1
ρ0(x)

∂ρ
∂p

(p0(x)) denotes the compressibility of the fluid at the rest

state. Using the chain rule with the state equation (1a) yields

∇ρ0(x) =
∂ρ

∂p
∇p0(x) = ρ0(x)c0(x)ρ0(x)f(x) .

Introduce a small parameter ε > 0 to characterize the size of the oscillations and the
deviations from the rest state, and consider the corresponding asymptotic expansions

ρ = ρ0(x) + ερ1(x, t) +O(ε2) ,

p = p0(x) + εp1(x, t) +O(ε2) ,

v = εv1(x, t) +O(ε2) ,

g = εg1(x) +O(ε2) .

Again from the chain rule we obtain

ρ̇1(x, t) = ρ0(x)c0(x)ṗ1(x, t) , ρ1(x, t) = ρ0(x)c0(x)p1(x, t) .

Conservation of mass (1b) implies to first order in ε that

ρ̇1 + ∇ · (ρ0v
1) = ρ0(x) g1(x) .
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From conservation of momentum (1c) we get

ε(ρ0 + ερ1)v̇1 − ε(λ1 + µ1)∇(∇ · v1)− εµ1∆v1 + ∇(p0 + εp1) = (ρ0 + ερ1)f(x) ,

and then the definitions of rest state and compressibility give the linear system

ρ0(x)v̇1 − (λ1 + µ1)∇(∇ · v1)− µ1∆v1 + ∇p1 = c0(x)ρ0(x)f(x) p1 , (2a)

c0(x)ṗ1 + ∇ · v1 + c0(x)ρ0(x)f(x) · v1 = g1(x) , (2b)

v1 = 0 on Γ0 , λ1(∇ · v1)n + 2µ1 ε(v1,n)− pn = 0 on Γ1 (2c)

for small variations of a compressible fluid. Here the two sets Γ0, Γ1 comprise a partition
of the boundary Γ = ∂Ω. In the incompressible case, c0(x) = 0, we obtain the Stokes’
system,

ρ0(x)v̇1 − µ1∆v1 + ∇p1 = (λ1 + µ1)∇g1(x) ,

∇ · v1 = g1(x) ,

v1 = 0 on Γ0 , 2µ1 ε(v1,n)− pn = 0 on Γ1 .

Navier-Stokes System

The material derivative of velocity has been approximated here by the acceleration. For
the calculation of the acceleration of a fluid element, the displacement of that element
along with the points must be considered. The momentum of the small subdomain B ⊂ Ω
travelling with the fluid is

∫
B

ρv(x+u(x, t), t) dx , and its derivative is given by the chain
rule as ∫

B

ρ

(
∂v(x + u(x, t), t)

∂t
+ ∂jv(x + u(x, t), t) vj(x + u(x, t), t)

)
dx .

Thus, the momentum equation for the fluid includes the additional term (v·∇)v = vj∂jv,
and the corresponding system is the Navier-Stokes system

ρv̇ − µ1∆v + (v · ∇)v + ∇p = f , ∇ · v = g in Ω ,

v = 0 on Γ0 , −pn + 2µ1 ε(v,n) = g on Γ1 ,

for a viscous incompressible fluid. Note that the quadratic nonlinearity arises from the
geometry of the motion, and it is not based on any independent assumptions.

The Stokes Equation

The (slow) flow of an incompressible homogeneous fluid is described by its pressure p(x, t)
and velocity v(x, t). The (evolutionary) Stokes system is to find such a pair of functions
on the smoothly bounded region Ω in IRn for t > 0 which satisfy the initial-boundary-
value problem

ρ0(x)v̇ − µ∆v + ∇p = f , ∇ · v = 0 in Ω× IR+ ,

v = 0 on Γ× IR+ ,

v(0) = v0 in Ω ,
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where Γ = ∂Ω is the boundary of Ω. The external force gives an acceleration of the
flow v(x, t). In order to maintain the null-divergence condition of incompressibility, a
pressure gradient arises to avoid a change in density. That is, a pressure builds up to
prevent the development of sources or sinks. This is the Lagrange multiplier that modifies
the momentum equation in order to maintain the divergence-free constraint.

If we separate variables, i.e., look for a solution in the form v(x, t) = eλtu(x) for some
number λ, we are led to the stationary Stokes system

ρ0(x)λu− µ∆u + ∇p = f , ∇ · u = 0 in Ω , (3a)

u = 0 on Γ , (3b)

for the pair u(x), p(x). We focus on this stationary system, but the results apply as well
to the evolutionary system.

Remark 1.1. For a pair of functions u ∈ H1(Ω), q ∈ H1(Ω), we have∫
Ω

∇ · u q dx = −
∫

Ω

u ·∇q dx +

∫
Γ

u · n q ds

With appropriate boundary conditions, this shows that Ker(∇·) = Rg(∇)⊥ so we expect
Rg(∇) = Ker(∇·)⊥ up to closure in appropriate spaces. Eventually, we will need to
construct carefully the gradient and divergence operators.

Now, if the pair u(x), p(x) is a solution to the stationary Stokes system (3), then for
every w ∈ H1(Ω) we have

λ

∫
Ω

ρ0(x)u ·w dx + µ

∫
Ω

∇ui ·∇wi dx−
∫

Γ

(∇ui · n)wi ds

−
∫

Ω

(∇ ·w)p dx +

∫
Γ

(w · n)p ds =

∫
Ω

f ·w dx .

We define the space V0 = {w ∈ H1(Ω) : ∇ · w = 0 in Ω, w = 0 on Γ}. The first
component of the solution u, p satisfies the Stokes equation

u ∈ V0 : λ

∫
Ω

ρ0(x)u ·w dx + µ

∫
Ω

∇ui ·∇wi dx =

∫
Ω

f ·w dx for all w ∈ V0 . (4)

It is the projection or restriction of Au− f to V0 ⊂ H1
0(Ω).

Define a continuous bilinear form a(·, ·) on H1
0(Ω) by

a(u,w) =

∫
Ω

(λρ0(x)u ·w + µ∇ui ·∇wi) dx , u, w ∈ H1
0(Ω),

and the linear functional f(·) on H1
0(Ω) by

f(w) =

∫
Ω

f ·w dx , w ∈ H1
0(Ω),
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where f ∈ L2(Ω) is given. Note that the principle part of a(·, ·) is a double sum

∇ui ·∇wi =
n∑

i,j=1

∂ui

∂xj

∂wi

∂xj

which contains all first-order derivatives. Thus, the space H1
0(Ω) is appropriate, and we

have the coercivity estimate

a(w,w) ≥
∫

Ω

n∑
i,j=1

(
∂wi

∂xj

)2

dx .

This gives the ellipticity condition

a(w,w) ≥ c0‖w‖2, for all w ∈ H1
0(Ω) , (5)

for some constant c0 > 0. We noted already that a(·, ·) is continuous with respect to the
H1

0(Ω) norm, and likewise the functional f(·) is continuous. We have the following result
immediately.

Theorem 1.1. There is exactly one solution of the stationary Stokes equation

u ∈ V0 : a(u,w) = f(w) for all w ∈ V0 . (6)

There remains the issue of the sense in which the solution of the Stokes equation (4)
satisfies the Stokes system (3).

The Mixed System

With the space V0 = {w ∈ H1(Ω) : ∇ ·w = 0 in Ω, w = 0 on Γ}, the stationary Stokes
equation is given by

u ∈ V0 : λ

∫
Ω

ρ0(x)u ·w dx + µ

∫
Ω

∇ui ·∇wi dx =

∫
Ω

f ·w dx for all w ∈ V0 .

We need to characterize the annihilator of the space V0, the kernel of the divergence
operator on H1

0(Ω). This will be used to show the equivalence of the weak form of the
Stokes equation with the strong formulation, and it is related to the characterization of
the range of the gradient operator from L2(Ω) into H−1(Ω).

For background, we mention the following profound result on the annihilator of

V0 ≡ {v ∈ C∞
0 (Ω) = D(Ω) : ∇ · v = 0}.

Theorem 1.2 (de Rham (1955)). Let Ω be a domain in IRn. Then f = ∇p in D′(Ω) if
and only if f(v) = 0 for all v ∈ V0.

A related result is the following.
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Theorem 1.3. Let Ω be a bounded domain in IRn with Lipschitz boundary. If p ∈ D′(Ω)
satisfies ∇p ∈ H−1(Ω), then p ∈ L2(Ω), and we have the estimate

‖p‖
L2(Ω)/IR ≤ CΩ‖∇p‖H−1(Ω) . (7)

Theorem 1.3 was proved by J.-L. Lions ca. 1958 for smoothly bounded Ω (published
in Duvaut-Lions (1972)), by Magenes & Stampacchia (1958) if Ω has a C1 boundary and
by Neĉas (1967) for the case of a Lipschitz boundary.

Recall that the space L2(Ω)/IR is just the quotient of L2(Ω) with the constant func-
tions. Estimates equivalent to (7) are

‖p‖L2(Ω) ≤ CΩ

(
|
∫

Ω

p(x) dx|+ ‖∇p‖H−1(Ω)

)
,

‖p‖L2(Ω) ≤ CΩ

(
‖p‖H−1(Ω) + ‖∇p‖H−1(Ω)

)
.

An immediate consequence of these estimates is the following result that is fundamental
for the Stokes system.

Corollary 1.4. Let Ω be bounded and open in IRn with Lipschitz boundary. The gradient
operator ∇ : L2(Ω) → H−1(Ω) has closed range. If additionally Ω is connected, then
the Ker(∇) consists of constant functions and

‖p‖
L2(Ω)/IR ≤ CΩ‖∇p‖H−1(Ω). (8)

The divergence operator ∇· : H1
0(Ω) → L2(Ω) is just the negative of the dual of

∇ : L2(Ω) → H−1(Ω), so it also has closed range, and we obtain a form of de Rham’s
theorem sufficient for our purposes.

Corollary 1.5. If f ∈ H−1(Ω) satisfies f(v) = 0 ∀v ∈ V0, then there is a p ∈ L2(Ω)
such that f = ∇p. If Ω is connected, then p is unique up to a constant.

This follows directly from the observation V0 = Ker(∇·).
For the non-homogeneous problems, we shall use the following.

Corollary 1.6. Let Ω be a bounded domain in IRn with Lipschitz boundary. Then the
divergence ∇· : H1

0(Ω) → L2(Ω) is an isomorphism of V⊥
0 onto L2

0(Ω).

For this we need only note that we can identify the annihiltor (V0)
0 with the orthogonal

complement V⊥
0 .

Of course we also obtain the corresponding inf-sup conditions along with the charac-
terization of the closed ranges.

The Stokes equation (4) is expressed in terms of the operator A : H1
0(Ω) → H−1(Ω)

and f ∈ H−1(Ω). It takes the form u ∈ V0, Au − f ∈ (V0)
0. From Corollary 1.5, this

means there is a p ∈ L2(Ω) for which Au− f = −∇p ∈ H−1(Ω). Thus, we have

Theorem 1.7. There exists a pair of functions

u ∈ H1
0(Ω), p ∈ L2(Ω) : Au + ∇p = f in H−1(Ω), ∇ · u = 0 in L2(Ω). (9)

This is precisely the form of our mixed system with B = ∇·.
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The Non-Homogeneous Problem

The fully non-homogeneous Dirichlet problem for the Stokes system takes the form

u ∈ H1(Ω), p ∈ L2(Ω) : Au + ∇p = f in H−1(Ω), (10a)

∇ · u = g in L2(Ω), u = h on Γ. (10b)

We can reduce this to the case of the stationaly Stokes system (3) given by Theorem 1.7
by a sequence of translations.

• Find uh ∈ H1(Ω) : γ(uh) = h ∈ H1/2(Γ).
This is easy since the range of the trace operator is H1/2(Γ).

• Find ug ∈ H1
0(Ω) : −Bug = g −∇ · uh

This requires g −∇ · uh ∈ L2
0(Ω) to apply Corollary 1.6, so we need∫
Ω

g dx +

∫
Γ

h · n dS = 0. (11)

• Find

us ∈ H1
0(Ω), p ∈ L2(Ω) :

Aus + ∇p = f −A(ug + uh) in H−1(Ω), ∇ · us = 0 in L2(Ω).

This follows from Theorem 3

Now set u = ug + uh + us to get the solution of (10).

Corollary 1.8. Assume f ∈ H−1(Ω), g ∈ L2(Ω), h ∈ H1/2(Γ) and that (11) holds.
Then there exists a solution of (10), u is unique and p is determined up to a constant.

The saddle-point problem

The solution of (10) with homogeneous boundary condition h = 0 can be characterized
by a saddle-point problem. For this we set

J(v) = 1
2

∫
Ω

(
λρ0(x)‖v‖2dx + µ

n∑
i=1

‖∇vi‖2

)
dx−

∫
Ω

f · v dx for all v ∈ H1
0(Ω)

and B = −∇· : H1
0(Ω) → L2(Ω). Then (10) corresponds to minimization subject to a

constraint,

u ∈ H1
0(Ω), Bu = g : J(u)− f(u) ≤ J(v)− f(v) ∀v ∈ H1

0(Ω) with Bv = g.

We saw the solution is the first component of the saddle-point problem

[u, p] ∈ H1
0(Ω)× L2

0(Ω) : L(u, q) ≤ L(u, p) ≤ L(v, p) ∀v ∈ H1
0(Ω), q ∈ L2

0(Ω) (12)
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in which the Lagrangian L : H1
0(Ω)× L2

0(Ω) → IR is

L(v, q) = J(v) + Bv(q)− g(q), [v, q] ∈ H1
0(Ω)× L2

0(Ω)

and the second component p is the Lagrange multiplier. The dual problem involves a non-
local pseudodiffeential operator of order 0. The non-homogeneous boundary condition
γ(v) = h could be obtained by a translation as before, and it could be obtained also by
introducing a second Lagrange multiplier of the form q2(γ(v) − h) into the operator B
and adding a second space to its range.

The Mixed Problem

We shall consider the stationary Stokes system with mixed boundary conditions

λu− µ∆u + ∇p = f , ∇ · u = 0 in Ω ,

u = 0 on Γ0 , µ
∂u

∂n
− pn = g on Γ1 .

Here the two sets Γ0, Γ1 comprise a partition of the boundary Γ = ∂Ω, and we are given
the functions f ∈ L2(Ω) and g ∈ L2(Γ1).

Now, if the pair u(x), p(x) is a solution to the stationary Stokes system, then for
every w ∈ H1(Ω) we have∫

Ω

λu ·w dx + µ

∫
Ω

∇ui ·∇wi dx− µ

∫
Γ

(∇ui · n)wi ds

−
∫

Ω

p (∇ ·w) dx +

∫
Γ

(w · n)p ds =

∫
Ω

f ·w dx .

We define the space V = {w ∈ H1(Ω) : ∇ · w = 0 in Ω, w = 0 on Γ0}. Then our
solution is chosen from this space, and if we also choose our test function w ∈ V above,
it follows that ∫

Ω

λu ·w dx + µ

∫
Ω

∇ui ·∇wi dx− µ

∫
Γ1

(∇ui · n)wi ds

+

∫
Γ1

(w · n)p ds =

∫
Ω

f ·w dx .

Thus, the weak form of the problem is now to find

u ∈ V :

∫
Ω

(λu ·w + µ∇ui ·∇wi) dx =

∫
Ω

f ·w dx +

∫
Γ1

g ·w ds for all w ∈ V .

As before, we obtain the following result.

Theorem 1.9. There is exactly one weak solution u to the stationary Stokes system.
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Note also that the pressure p is determined up to a constant.
Conversely, let’s assume that u is a solution of the weak form of the stationary Stokes

system. Then from the inclusion u ∈ V we obtain u ∈ H1(Ω), ∇ · u = 0 in Ω, and u =
0 on Γ0 in the sense of boundary trace. Furthermore, by taking test functions w ∈ V0 =
V ∩H1

0(Ω), we find that
λu− µ∆u− f ∈ V⊥

0 ,

the indicated annihilator of V0 in H−1(Ω), and so it is a gradient, and we have

λu− µ∆u− f = −∇p , p ∈ L2(Ω) .

It follows that for each i = 1, 2, ..., n we have µ∇ui − p ei ∈ L2(Ω) and ∇ · (µ∇ui − p ei)
is the i-th component of µ∆u −∇p = λu − f ∈ L2(Ω). This shows that we have each
µ∇ui − p ei ∈ L2

div(Ω) and so there is a well-defined normal trace on the boundary. We
use this equation to substitute for f in the weak form to obtain∫

Ω

(µ∇ui ·∇wi + (µ∆u−∇p) ·w) dx =

∫
Γ1

g ·w ds for all w ∈ V .

Since ∇ · w = 0, the i-th component of the integrand on the left side is given by
∇ · [(µ∇ui − pei)wi] . The generalized Stokes theorem implies that its integral over Ω is
given by ∫

Γ1

γn(µ∇ui − pei) wi ds ,

and so from above we obtain∫
Γ1

(
µ

∂u

∂n
− pn

)
·w dx =

∫
Γ1

g ·w ds for all w ∈ V .

It is in this sense that we have

µ
∂u

∂n
− pn = g on Γ1 .

Remark 1.2. Because of the special properties of the space B, the condition γn(w) = 0
on Γ1 is different from the condition γn(w) = 0 for all w ∈ V.
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