A REMARK ON HECKE OPERATORS AND A THEOREM OF DWORK AND KOIKE

HOLLY SWISHER

Abstract. Let \(p \geq 5 \) be prime, \(\mathcal{S}_p \) the set of all characteristic \(p \) supersingular \(j \)-invariants in \(\mathbb{F}_p - \{0, 1728\} \), and \(\mathcal{U}_p \) the set of all monic irreducible quadratic polynomials in \(\mathbb{F}_p[x] \) whose roots are supersingular \(j \)-invariants. A theorem of Dwork and Koike asserts that there are integers \(A_p(\alpha) \), \(B_p(g) \), \(C_p(g) \), and a polynomial \(D_p(x) \in \mathbb{F}_p[x] \) of degree \(p - 1 \), for which

\[
j(pz) \equiv j(z)^p + pD_p(j(z)) + p \sum_{\alpha \in \mathcal{S}_p} A_p(\alpha) j(z) - \alpha + p \sum_{g(z) \in \mathcal{U}_p} B_p(g) j(z) + C_p(g) g(j(z)) \pmod{p^2}.
\]

It is natural to seek a description of the polynomials \(D_p(x) \). Here we provide such a description in terms of certain Hecke polynomials.

1. Introduction

Throughout this paper let \(q := e^{2\pi i z} \), and let \(j(z) \) be the usual elliptic modular function on \(SL_2(\mathbb{Z}) \):

\[
j(z) = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots
\]

Losing the constant term, we define \(J(z) \) to be the usual Hauptmodul

\[
J(z) := j(z) - 744 = \sum_{n=-1}^{\infty} c(n)q^n = q^{-1} + 196884q + 21493760q^2 + \cdots.
\]

We recall an infinite class of monic polynomials \(j_m \in \mathbb{Z}[j(z)] \) of degree \(m \). The \(j_m \) can be described in two ways. Let \(j_0(z) = 1 \), and for each positive integer \(m \), let \(j_m(z) \) be given by

\[
j_m(z) = J(z) \mid T_0(m),
\]

where \(T_0(m) \) is the normalized \(m \)th Hecke operator of weight zero. Notice that for each \(m \), \(j_m(z) \) is the unique modular function that is holomorphic on
the upper half plane \mathcal{H} and has Fourier expansion of the form

$$j_m(z) = q^{-m} + \sum_{n=1}^{\infty} c_m(n)q^n \in \frac{1}{q^m} \mathbb{Z}[[q]].$$

Each $j_m(z)$ is a monic degree m polynomial in $\mathbb{Z}[j(z)]$. The first few $j_m(z)$ are:

$$j_0(z) = 1$$
$$j_1(z) = J(z) = j(z) - 744$$
$$j_2(z) = j(z)^2 - 1488j(z) + 159768.$$

For a second description of the j_m and more about their importance see [Br-K-O].

Here we show that the $j_p(z)$ are also important for studying the p-adic properties of modular forms. For primes $p \geq 5$, let \mathcal{E}_p be the set of all characteristic p supersingular j-invariants in $\mathbb{F}_p - \{0,1728\}$, and \mathcal{M}_p the set of all monic irreducible quadratic polynomials in \mathbb{F}_p whose roots are supersingular j-invariants. As a special case of the work of Deligne and Dwork [D] on the p-adic rigidity of the map $j(z) \rightarrow j(pz)$, Koike [K] described the Fourier expansion of $j(pz) \pmod{p^2}$. Refining the simple fact that $j(pz) \equiv j(z)^p \pmod{p}$, Koike proved (see [K], [D]) that for primes $p \geq 5$ there exist integers $A_p(\alpha), B_p(g), C_p(g) \in \mathbb{Z}$ and a polynomial $D_p(x) \in \mathbb{F}_p[x]$ of degree $p - 1$ such that

$$j(pz) \equiv j(z)^p + pD_p(j(z))$$
$$+ p \sum_{\alpha \in \mathcal{E}_p} \frac{A_p(\alpha)}{j(z) - \alpha} + p \sum_{g(x) \in \mathcal{M}_p} \frac{B_p(g)j(z) + C_p(g)}{g(j(z))} \pmod{p^2}.$$

Here we provide an explicit description of the polynomials $D_p(x)$ in terms of the j_p. If $p \geq 5$ is prime, then in $\mathbb{F}_p[j]$ we show that

$$D_p(j) = \frac{1}{p}(j_p - j^p + 744).$$

In particular, we prove the following theorem.

Theorem 1.1. If $p \geq 5$ is prime, then there exist $A_p(\alpha), B_p(g), C_p(g) \in \mathbb{Z}$ such that

$$j(pz) \equiv j_p(z) + 744 + p \sum_{\alpha \in \mathcal{E}_p} \frac{A_p(\alpha)}{j(z) - \alpha} + p \sum_{g(x) \in \mathcal{M}_p} \frac{B_p(g)j(z) + C_p(g)}{g(j(z))} \pmod{p^2}.$$
Example. Consider the case where \(p = 43 \). Here we have \(\mathcal{S}_{43} = \{-2\} \) and \(\mathfrak{M}_{43} = \{x^2 + 19x + 16\} \). In Koike’s theorem we get that
\[
j(43z) \equiv j(z)^{43} + 43(30j(z)^{42} + 36j(z)^{41} + 12j(z)^{40} + \cdots + 14j(z) + 9)
+ \frac{860}{j(z) + 2} + \frac{43(11j(z) + 40)}{j(z)^2 + 19j(z) + 16} \pmod{43^2},
\]
which shows \(D_{43}(x) = 30x^{42} + 36x^{41} + 12x^{40} + \cdots + 34x^2 + 14x + 9 \) in \(\mathbb{F}_{43}[x] \).

Now consider
\[
j_{43} - j_{43} + 744 \equiv -31992j^{42} + 49137996j^{41} - 4825080706976j^{40} + \cdots - 123992487051810829159423126568708241235053015839332472360
+ 92398578343596233461571648749130166186015992.
\]
Dividing by 43 gives
\[
\frac{j_{43} - j_{43} + 744}{43} \equiv -744j^{42} + 11427372j^{41} - 112211179232j^{40} + \cdots - 288354621050722858510284480392344747058264920892
+ 8680168281218571589385958917710968575561166655488744,
\]
which in \(\mathbb{F}_{43} \) is equal to
\[
30j^{42} + 36j^{41} + 12j^{40} + \cdots + 34j^2 + 14j + 9.
\]

2. Proof of Theorem 1.1

We begin with a preliminary lemma.

Lemma 2.1. Suppose \(f, g \in \mathbb{Z}[x] \) are polynomials with \(g \) monic, and \(\deg g = m > \deg f = n \). Then the Fourier expansion of \(\frac{f(j(z))}{g(j(z))} \) is of the form
\[
\sum_{k=m-n}^{\infty} a(k)q^k, \quad \text{where } a(k) \in \mathbb{Z} \text{ (i.e., there are only positive powers of } q).\]

Proof. By the hypotheses \(q^n f(j(z)) \) is in the ring of formal power series \(\mathbb{Z}[[q]] \), and \(q^m g(j(z)) \) is a unit in \(\mathbb{Z}[[q]] \). Thus
\[
\frac{f(j(z))}{g(j(z))} = q^{m-n}f(j(z))q^{-m}g(j(z)) \in q^{m-n}\mathbb{Z}[[q]]. \quad \square
\]

Proof of Theorem 1.1. Define the polynomial \(F_p(x) \in \mathbb{Z}[x] \) by \(F_p(j(z)) = j_p(z) - j(z)^p + 744 \). Then Koike’s result implies that
\[
j_p(z) - j(pz) + 744 \equiv F_p(j(z)) - pD_p(j(z)) - p \sum_{\alpha \in \mathcal{S}_p} A_p(\alpha) j(z) - \alpha - p \sum_{g(z) \in \mathfrak{M}_p} \frac{B_p(g(j(z)) + C_p(g)}{g(j(z))} \pmod{p^2}.\]
Now looking at the q-expansions of $j_p(z)$ and $j(pz)$ we see that the left hand side has only positive powers of q. In particular,

$$\text{LHS} \equiv \sum_{n \geq 1} a(n)q^n \pmod{p^2} \implies \text{RHS} \equiv \sum_{n \geq 1} a(n)q^n \pmod{p^2},$$

where $a(n) \in \mathbb{Z}$. Thus by Lemma 2.1 we deduce that $F_p(j(z))$ and $pD_p(j(z))$ have the same coefficients of q^n for $n \leq 0$ modulo p^2. As polynomials in $\mathbb{Z}[x]$ the coefficients of x are determined solely by these q-coefficients for nonpositive powers of q. So we have $F_p(x) \equiv pD_p(x) \pmod{p^2}$, and thus in $\mathbb{F}_p[x],$

$$\frac{1}{p}F_p(x) = D_p(x).$$

References

Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706, USA

E-mail address: *swisher@math.wisc.edu*