MTH 112: Elementary Functions

Section 8.3: Vectors

- Learn basic concepts about vectors.
- Learn representations of vectors.
- Find the magnitude, direction angle, and components of a vector.
- Perform operations on vectors.
- Learn to apply the dot product.
- Use vector to calculate work.
Vectors

A Vector quantity involves both magnitude and direction. Magnitude can be interpreted as size or length.

A vector quantity can be represented by a directed line segment called a vector.

- Two vectors are equal if they have the same magnitude and direction.
Two ways to represent a vector

- A vector is usually represented symbolically by a letter printed in boldface type.

- A second way to denote a vector is to use two points. If the initial point of a vector \(\mathbf{v} \) is \(P \) and its terminal point is \(Q \), then \(\mathbf{v} = \overrightarrow{PQ} \).
Representation of vectors

If we place the initial point of vector \mathbf{v} at the origin, then its terminal point can be used to determine \mathbf{v}. To distinguish the point (a_1,a_2) from the vector \mathbf{v}, we use the notation

$$\mathbf{v} = \langle a_1, a_2 \rangle$$
The **horizontal component** of \(\mathbf{v} \) is \(a_1 \) and the **vertical component** of \(\mathbf{v} \) is \(a_2 \).
A vector with its initial point at the origin in the rectangular coordinate system is called a position vector. The figure shows the position vector \(\mathbf{v} = \langle a_1, a_2 \rangle \)
The positive angle θ between the x-axis and the position vector is called the **direction angle** for the vector. θ is the direction angle for vector \mathbf{v}.

If $\mathbf{v} = \langle a_1, a_2 \rangle$ then the direction angle satisfies

$$\tan(\theta) = \frac{a_2}{a_1}, \text{ where } a_1 \neq 0.$$
Magnitude of a vector

If \(\mathbf{v} = < a_1, a_2 > \) then the magnitude (or length) of \(\mathbf{v} \) is given by

\[
\| \mathbf{v} \| = \sqrt{a_1^2 + a_2^2}
\]

If \(\| \mathbf{v} \| = 1 \) then \(\mathbf{v} \) is the unit vector.
Magnitude of a vector

Example 1

Find the magnitude and direction angle θ for $\mathbf{v} = \langle -9, 40 \rangle$.

$\parallel \mathbf{v} \parallel = 41$

$\theta = 102.68^\circ$
Magnitude of a vector

Example 2

Find the magnitude and direction angle θ for $\mathbf{v} = < -28, -45 >$.

\[
\text{magnitude: } \sqrt{(-28)^2 + (-45)^2} = 53 \\
\text{direction angle: } \theta = \tan^{-1}\left(\frac{-45}{-28}\right) + \pi \approx 4.15579 \text{ rad} \approx 238.1092 \degree
\]
Horizontal and vertical components

The horizontal and vertical components for a vector \(\mathbf{v} = \langle a_1, a_2 \rangle \) having direction angle \(\theta \) are given by

\[
a_1 = \| \mathbf{v} \| \cos(\theta) \quad \text{and} \quad a_2 = \| \mathbf{v} \| \sin(\theta)
\]

That is,

\[
\mathbf{v} = \langle a_1, a_2 \rangle = \langle \| \mathbf{v} \| \cos(\theta), \| \mathbf{v} \| \sin(\theta) \rangle.
\]
Example

Vector \(\mathbf{w} \) has magnitude 12.5 and direction angle 53.6°. Find the horizontal and vertical components. Round to the nearest tenth.
Vector addition

If \(\mathbf{a} = \langle a_1, a_2 \rangle \) and \(\mathbf{b} = \langle b_1, b_2 \rangle \) then the sum of \(\mathbf{a} \) and \(\mathbf{b} \) is given by

\[
\mathbf{a} + \mathbf{b} = \langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle = \langle a_1 + b_1, a_2 + b_2 \rangle.
\]

Here \(c = \mathbf{a} + \mathbf{b} \).

Notice \(\mathbf{a} + \mathbf{b} \) is the diagonal of a parallelogram.
Vector addition. Graphing $\mathbf{u} + \mathbf{v}$

\[\mathbf{u} = \langle 2, 2 \rangle \]
\[\mathbf{v} = \langle -4, -1 \rangle \]
\[\mathbf{u} + \mathbf{v} = \langle -2, 1 \rangle \]
\[= \langle 2 + (-4), 2 + (-1) \rangle \]
Vector subtraction

If \(\mathbf{a} = \langle a_1, a_2 \rangle \) and \(\mathbf{b} = \langle b_1, b_2 \rangle \) then the difference of \(\mathbf{a} \) and \(\mathbf{b} \) is given by

\[
\mathbf{a} - \mathbf{b} = \langle a_1, a_2 \rangle - \langle b_1, b_2 \rangle = \langle a_1 - b_1, a_2 - b_2 \rangle.
\]
Example 3

Let $u = \langle 3, 4 \rangle$ and $v = \langle 5, -6 \rangle$. Find $u - v$.

\[
\begin{align*}
\mathbf{u} &= \langle 3, 4 \rangle \\
\mathbf{v} &= \langle 5, -6 \rangle \\
\mathbf{u} - \mathbf{v} &= \langle 3 - 5, 4 + 6 \rangle \\
&= \langle -2, 10 \rangle
\end{align*}
\]
Scalar multiplication

If \(\mathbf{v} = \langle v_1, v_2 \rangle \) and \(k \) is a real number, then the scalar product \(k\mathbf{v} \) is given by

\[
k\mathbf{v} = k\langle v_1, v_2 \rangle = \langle kv_1, kv_2 \rangle
\]
Example

Find each of the following expressions graphically and symbolically if \(a = \langle 12, 5 \rangle \) and \(b = \langle 4, 7 \rangle \).

1. \(-2b\)
2. \(a + 2b\)
Vector notation using i and j

A second type of vector notation involves the vectors $i = \langle 1, 0 \rangle$ and $j = \langle 0, 1 \rangle$. A vector $\mathbf{a} = \langle a_1, a_2 \rangle$ can be expressed as

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}.$$

For example, $\langle 3, -4 \rangle$ and $3\mathbf{i} - 4\mathbf{j}$ represent the same vector.
Dot product

Let \(\mathbf{a} = \langle a_1, a_2 \rangle \) and \(\mathbf{b} = \langle b_1, b_2 \rangle \). The dot product of \(\mathbf{a} \) and \(\mathbf{b} \), denoted \(\mathbf{a} \cdot \mathbf{b} \), is a real number given by

\[
\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2
\]

Example 4

Calculate \(\mathbf{a} \cdot \mathbf{b} \) if:

1. \(\mathbf{a} = \langle 4, 3 \rangle \) and \(\mathbf{b} = \langle 1, 2 \rangle \)
2. \(\mathbf{a} = 2\mathbf{i} + 5\mathbf{j} \), \(\mathbf{b} = 3\mathbf{i} + 2\mathbf{j} \)
Angle between two vectors

If \(\mathbf{a} \) and \(\mathbf{b} \) are nonzero vectors, then the angle between \(\mathbf{a} \) and \(\mathbf{b} \) is given by

\[
\theta = \cos^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\| \mathbf{a} \| \| \mathbf{b} \|} \right)
\]

Vectors \(\mathbf{a} \) and \(\mathbf{b} \) are perpendicular if and only if \(\mathbf{a} \cdot \mathbf{b} = 0 \).
Example

Let \(\mathbf{a} = \langle 4, -5 \rangle \) and \(\mathbf{b} = \langle 2, -2 \rangle \)

1. Find \(\mathbf{a} \cdot \mathbf{b} \)
2. Approximate the angle \(\theta \) between \(\mathbf{a} \) and \(\mathbf{b} \) to the nearest tenth of a degree.
3. State if vectors \(\mathbf{a} \) and \(\mathbf{b} \) are perpendicular, parallel, or neither. If \(\mathbf{a} \) and \(\mathbf{b} \) are parallel, state whether they point in the same direction or in opposite directions.
Applications to vectors

Example 5

Suppose that vector \mathbf{a} represents a force of 80 pounds pulling on a water-ski towrope and \mathbf{b} represents a force of 60 pounds pulling on a second towrope. The resultant force $\mathbf{c} = \mathbf{a} + \mathbf{b}$ is given by the diagonal of the parallelogram. Vector \mathbf{c} represents the net force exerted by the two water skiers. Find the magnitude of the resultant force on the ski boat if the angle between the towropes is 25°.
Example 6: Work

If a constant force F is applied to an object that moves along a vector D, then the work W done is

$$W = F \cdot D$$
Example

Find the work done when a force $\mathbf{F} = \langle 3, 2 \rangle$ moves an object from point $P = (2, 1)$ to point $Q = (3, 1)$, where force is measured in pounds and distance in feet.