Department of Mathematics OSU Qualifying Examination Fall 2009

PART II: Linear Algebra and Complex Analysis

- Do any two of the three problems in each section of Part II. Indicate on the sheet with your identification number the four problems which you wish to be graded.
- Your solutions should contain all mathematical details. Please write them up as clearly as possible.
- Explicitly state any standard theorems, including hypotheses, that are necessary to justify your reasoning.
- You have three hours to complete Part II.
- On problems with multiple parts, individual parts may be weighted differently in grading.

Linear Algebra Problems

1. Let V be a finite-dimensional vector space over a field F. A non-zero linear operator T on V is a called a *projection* if there exist subspaces W_1, W_2 such that $V = W_1 \oplus W_2$ and $T(w_1 + w_2) = w_1$ for all $w_i \in W_i$.

The *trace* of any matrix is the sum of its diagonal entries. For this problem you may assume the standard result that trace is invariant under similarity.

Prove: If T is a projection on a finite-dimensional vector space then the trace of any matrix representation of T equals the rank of T.

- 2. Let V be a finite-dimensional (Hermitian) inner product space over \mathbb{C} of dimension 2n. Let W be an n-dimensional subspace of V, and W^{\perp} be its orthogonal complement. Let $\{a_1,\ldots,a_n\}$, $\{b_1,\ldots,b_n\}$ be orthonormal bases for W, W^{\perp} , respectively. Consider the linear operator T defined by $T(a_i) = b_i$, $T(b_i) = a_i$ for all $i = 1,\ldots,n$.
 - (a) Find the Jordan Canonical Form for T.
 - (b) Find the orthogonal complements of all eigenspaces of T.
- 3. (a) Let T be a linear operator on the complex space \mathbb{C}^n . Prove: If $\ker(T - \alpha I)^n = \ker(T - \alpha I)$ for all $\alpha \in \mathbb{C}$ then T is diagonalizable.
 - (b) For $A = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$, find all real constants c such that the (entrywise) limit $\lim_{k\to\infty} (cA)^k$ exists and is nonzero.

Complex Analysis Problems

- 1. (a) Find all entire functions f(z) such that $f(x) = \cos x$ for all $x \in \mathbb{R}$.
 - (b) Construct analytic functions f(z), $g(z): \mathcal{D}_1 \to \mathcal{D}_1$, where \mathcal{D}_1 is the open unit disk centered at the origin, with f(1/2) = 3/4, f'(1/2) = 7/12, and g(1/2) = 3/4, g'(1/2) = 3/4, or show that such a function does not exist. Discuss the uniqueness of f(z) and g(z) (provided they exist).
- 2. (a) Let f be a continuous complex-valued function defined on an open, connected set $\Omega \subset \mathbb{C}$ such that the (complex) integral $\int_{\gamma} f(z) \, dz = 0$ for all closed piecewise smooth curves γ in Ω . Show that f is analytic in Ω . (Note: you may use the fact that the derivative of an analytic function is analytic without proof.)
 - (b) Let

$$f(z) = \int_0^1 \frac{\exp(tz)}{\sin\sqrt{t}} dt, \quad z \in \mathbb{C}.$$

Show that f is entire.

3. Use the calculus of residues to compute the following integrals:

(a)
$$\frac{1}{2\pi i} \int_{\gamma} \frac{\sin z}{z^4} dz,$$

where γ is the unit circle traced in the counterclockwise direction.

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} \, dx.$$