Department of Mathematics OSU Qualifying Examination Fall 2009

PART I: Real Analysis

- Do any four of the six problems in Part I. Indicate on the sheet with your identification number the four which you wish graded.
- Your solutions should contain all mathematical details. Please write them up as clearly as possible.
- Explicitly state any standard theorems, including hypotheses, that are necessary to justify your reasoning.
- You have three hours to complete Part I.
- On problems with multiple parts, individual parts may be weighted differently in grading.

1. Use the contraction mapping theorem to prove that, under suitable hypotheses, the equation

$$\phi(x) = f(x) + \int_a^b K(x, y)\phi(y) \ dy, \qquad a \le x \le b,$$

has a unique solution ϕ . Here, f and K are known functions, and the function ϕ is to be determined. As part of your analysis, develop appropriate hypotheses, including properties of K and f and the specification of the space of functions. Your hypotheses should include a reasonably broad class of functions f and K; for example, do not simply assume f = 0 and K = 0.

- 2. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Do not assume any properties of $\|\cdot\|$, other than those that follow from the general definition of norm on a vector space.
 - (a) Let f(x) = ||x|| for all $x \in \mathbf{R}^n$. Show that f is continuous on \mathbf{R}^n with respect to the metric ρ defined by $||\cdot||$, i.e., $\rho(x,y) = ||x-y||$ for all x and y in \mathbf{R}^n . (Use the triangle inequality.)
 - (b) Now define a different norm $\|\cdot\|_1$ by $\|x\|_1 = \sum_{i=1}^n |x_i|$ for all $x \in \mathbf{R}^n$. Prove that the function f defined in part (a) is continuous with respect to the metric defined by $\|\cdot\|_1$. (You do not need to prove that $\|\cdot\|_1$ satisfies all of the axioms of a norm.)
 - (c) Show that the norms $\|\cdot\|$ and $\|\cdot\|_1$ are equivalent. That is, show that there exist positive constants M_1 and M_2 such that $M_1\|x\|_1 \leq \|x\| \leq M_2\|x\|_1$ for all $x \in \mathbf{R}^n$. (*Hint*: Consider what happens when f is restricted to the set $S = \{x \in \mathbf{R}^n : \|x\|_1 = 1\}$.)
 - (d) Give an example of a linear space (vector space) X and two norms on X that are *not* equivalent, in the sense defined in part (c).
- 3. Define the convolution of two functions f and g by

$$(f * g)(x) = \int_{\infty}^{\infty} f(x - y)g(y)dy = \int_{\infty}^{\infty} f(y)g(x - y)dy,$$

assuming that the integrals exist. Let ϕ be a continuous function on \mathbf{R} that satisfies $\phi(x) > 0$ for -1 < x < 1, $\phi(x) = 0$ otherwise, and $\int_{-\infty}^{\infty} \phi(x) dx = 1$. For each integer $n \ge 1$, let $\phi_n(x) = n\phi(nx)$ for all real x. Then $\int_{-\infty}^{\infty} \phi_n(x) dx = 1$ for all n, ϕ_n is nonzero on the interval (-1/n, 1/n), and as n increases the graph of ϕ_n becomes narrow and tall. The convolution $(f * \phi_n)(x)$ is therefore a weighted average of values of f(y) for y near x.

Prove that if $f \in L^1(\mathbf{R})$, then $f * \phi_n \to f$ in $L^1(\mathbf{R})$ as $n \to \infty$. (That is, $||f * \phi_n - f||_1 \to 0$ as $n \to \infty$.)

(*Hint:* First consider the case where f is continuous and has compact support, and then extend to $L^1(\mathbf{R})$. You may use the fact, without proving it, that the set of continuous functions with compact support is dense in $L^1(\mathbf{R})$.)

- 4. For both parts of this problem consider the metric space consisting of the interval [0,1] equipped with the usual metric $\rho(x,y) = |x-y|$.
 - (a) Show that there are no nowhere dense subsets of [0, 1] that have Lebesgue measure equal to 1.
 - (b) A set whose complement is a countable union of nowhere dense sets is called a residual set. Show that there exist non-empty residual subsets of [0, 1] with zero Lebesgue measure.

Hint: You may use without proof that for any $0 \le \alpha < 1$ there exists a nowhere dense subset E_{α} of [0,1] with Lebesgue measure equal to α .

- 5. Let $1 \leq p < \infty$ and $f_n \in L_p(\mathbf{R})$, $n \in \mathbf{N}$, a sequence of functions that converges pointwise almost everywhere to a function $f : \mathbf{R} \to \mathbf{R}$. Assume that there is a nonnegative function F with $||F||_p = (\int_{\mathbf{R}} |F(x)|^p dx)^{1/p} < \infty$ such that $|f_n| \leq F$ for all $n \in \mathbf{N}$.
 - (a) Show that $\lim_{n\to\infty} || f_n f ||_p = 0$.
 - (b) Show by means of a counterexample that the conclusion in part a) need not hold if the hypothesis $|f_n| \leq F$ is omitted.
- 6. Let f be a nonnegative function defined on a measurable subset E of \mathbf{R} . Show that f is measurable if the region $\{(x,y):x\in E,\ f(x)\geq y\}$ is a measurable subset of \mathbf{R}^2 .

Hint: Consider Tonelli's theorem.