Department of Mathematics Qualifying Examination Fall Term 2000

Part I: Real Analysis

Do any four of the problems in Part I. Your solutions should include all essential mathematical details; please write them up as clearly as possible. You have three hours to complete Part I of the examination.

- 1. Let $f: \mathbf{R} \to \mathbf{R}$ be a nonnegative, Lebesgue integrable function.
 - (a) Define functions $f_n : \mathbf{R} \to \mathbf{R}$ by

$$f_n(x) = \begin{cases} f(x) & \text{if } f(x) \le n; \\ n & \text{otherwise} \end{cases}$$

Suppose that E is any measurable set in \mathbf{R} . Show that

$$\lim_{n \to \infty} \int_E f_n(x) \, dx = \int_E f(x) \, dx.$$

Note: If you use any major theorems in your solution, clearly state the hypotheses and conclusion of the theorems, and indicate how your use of the theorem is justified.

(b) Let $F: \mathbf{R} \to \mathbf{R}$ be given by

$$F(x) = \int_{[-\infty, x]} f$$

Show that F is continuous. (Do not assume that f is bounded.)

2. Show that every convergent sequence of measurable functions on a set of finite measure is almost uniformly convergent. That is, show the following:

Let E be a Lebesgue measurable subset of R with finite measure. Let $\mu(A)$ represent the Lebesgue measure of A. Let (f_n) be a sequence of

measurable functions defined on E. Suppose that f is a real valued function such that $f_n(x) \to f(x)$ almost everywhere on E. Then given $\epsilon > 0$, and $\delta > 0$, show that there is a measurable set $A \subset E$ with $\mu(A) < \delta$ and an integer N such that for all x **not in** A, and for all $n \geq N$

$$|f_n(x) - f(x)| < \epsilon$$

Note: State clearly any properties of measurable sets that you use.

- 3. Consider the relation on I := [0,1] defined by $x \sim y$ if and only if $x y \in \mathbf{Q}$.
 - (a) Show that this relation is an equivalence relation.
 - (b) By an application of the axiom of choice, form a set S of distinct equivalence class representatives, one for each class of the relation. Prove that S is **not** Lebesgue integrable.
- 4. (a) Prove that the (improper) Riemann integral

$$\int_0^\infty \frac{\sin x}{x} \, dx$$

exists.

(b) Prove that the (improper) Riemann integral

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx$$

diverges.

- 5. Recall that a metric space X is called separable if it has a countable (or finite) dense subset. Show that if a metric space X is separable then every subset Y of X is also separable.
- 6. (a) Let I denote the unit interval, [0,1]. Consider a function f from I to itself. Suppose the graph

$$\Gamma_f = \{ (x, f(x)) \mid x \in I \}$$

is a closed subset of $I \times I$. Prove that f is continuous.

(b) Give an example of a discontinuous function $f: \mathbf{R} \to \mathbf{R}$ whose graph is closed.

Department of Mathematics Qualifying Examination Fall Term 2000

Part II: Complex Analysis and Linear Algebra

Do any two problems in Part CA and any two problems in Part LA. Your solutions should include all essential mathematical details; please write them up as clearly as possible. You have three hours to complete Part II of the examination.

Part CA

1. Let C be the boundary of the square of vertices $\pm 2 \pm 2i$, oriented counterclockwise. Let $\alpha = 1 + i$. Evaluate

$$\oint_{\mathcal{C}} \frac{z^3}{\left(z - \alpha\right)^2} \, dz$$

- 2. Suppose f(z) is a non-constant entire function. Prove, without appealing to Picard's theorem, that there exists a $z_0 \in \mathbf{C}$ such that $f(z_0)$ is a positive real number.
- 3. Suppose $f(z) = \frac{az+b}{cz+d}$ be a fractional-linear transformation of the complex plane. Here a,b,c, and d are complex numbers and $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$.
 - (a) Show that f(z) can be written as the composition of maps of the following three types: (i) $f_1(z) = z + z_0$, for some $z_0 \in \mathbf{C}$, (ii) $f_2(z) = \alpha z$ for some $\alpha \in \mathbf{C}$ and (iii) $f_3(z) = 1/z$.
 - (b) Show that if A is a line and B is a circle then f(A) is either a line or a circle and f(B) is either a line or a circle.

Continued on back

Part LA

- 1. Let A be a 4×4 matrix with entries in C such that $\operatorname{rank}(A) = 1$. Show that either A is diagonalizable (over C) or $A^2 = 0$, but not both.
- 2. Consider the complex numbers \mathbf{C} as a vector space over the reals \mathbf{R} ; note that $\mathcal{B} = \{1, i\}$ is a basis for this vector space. For each $\alpha \in \mathbf{C}$, let

$$l_{\alpha}: \mathbf{C} \to \mathbf{C}$$

be defined by $l_{\alpha}(z) = \alpha z$ for all $z \in \mathbf{C}$.

- (a) Given $\alpha \in \mathbf{C}$, find the matrix M_{α} representing the linear operator l_{α} with respect to the basis $\mathcal{B} = \{1, i\}$; that is, $M_{\alpha} = [l_{\alpha}]_{\mathcal{B}}$.
- (b) Determine the exact set of $\alpha \in \mathbf{C}$ such that M_{α} is diagonalizable over \mathbf{R} .
- (c) For which $\alpha \in \mathbf{C}$ is the characteristic polynomial of l_{α} equal to its minimal polynomial?
- (d) Let $\rho : \mathbf{C} \to M_2(\mathbf{R})$ by sending α to M_{α} . Show that ρ is an injective **R**-linear map.
- 3. (a) Prove that if V is a finite dimensional inner product space over a field F and $\phi: V \to F$ is a linear functional then there exists a unique vector v_0 in V such that for any $v \in V$, $\phi(v) = \langle v, v_0 \rangle$.
 - (b) Consider the real vector space of polynomials with real coefficients, with the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx.$$

Fix $x_0 \in \mathbf{R}$ and let L be the linear functional given by $L(f) = f(x_0)$. Show that there is no polynomial p(x) such that for all polynomials $f, L(f) = \langle f, p \rangle$.