Department of Mathematics Qualifying Examination Fall 2005

Part I: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part: Complex Analysis

- 1. Let \mathcal{C} denote the entire complex plane. Suppose f is an non-constant entire function, meaning that f is analytic in the entire complex plane, from \mathcal{C} to \mathcal{C} . Show that the range $f(\mathcal{C})$ is dense in \mathcal{C} .
- 2. Suppose z = x + iy is a complex number where x, y are real numbers. Denote Im(z) = y. Find a conformal map from the upper half open disk $\{z : |z| < 1, |z| < 1, |z| < 1\}$.
- 3. (a) Suppose a function f is analytic everywhere in the complex plane except for a finite number of singular points interior to a circle Γ , |z| = r, r > 0, which is transversed once in the counterclockwise direction. Suppose $\text{Res}\{f(z), z_0\}$ denotes the residue of f(z) at z_0 . Prove the equality

$$\oint_{\Gamma} f(z) \ dz = 2\pi i \operatorname{Res} \left\{ \frac{1}{z^2} f(\frac{1}{z}), \ 0 \right\}.$$

(b) Suppose P(z) and Q(z) are two complex polynomials with degree n and m respectively. Suppose Γ is a simple closed contour that encloses all zeros of Q(z). If $m \geq n+2$ show that the contour integral

$$\oint_{\Gamma} \frac{P(z)}{Q(z)} \ dz = 0.$$

Continued on next page

Part: Linear Algebra

1. Let $f: V \times V \to \mathbb{R}$ be a bilinear form on a finite-dimensional real vector space V. Thus f is linear in both variables:

$$f(ax + by, z) = af(x, z) + bf(y, z)$$

$$f(x, cy + dz) = cf(x, y) + df(x, z).$$

Suppose that $v \in V$ is such that $f(v,v) \neq 0$. Let $\langle v \rangle$ be the subspace of V generated by v and let v^{\perp} be the following subset of V:

$$v^{\perp} = \{ x \in V : f(x, v) = 0 \}.$$

- (a) Prove that v^{\perp} is a subspace of V.
- (b) Prove that $V = \langle v \rangle \oplus v^{\perp}$.
- (c) The function $R: V \to V$ given by:

$$R(x) = x - 2\frac{f(x, v)}{f(v, v)} \cdot v$$

is a linear transformation of V. What is the Jordan canonical form of (a matrix representation for) R?

- (d) What is the determinant of (a matrix representation for) R?
- 2. An $n \times n$ matrix A is nilpotent if $A^m = 0_n$ for some $m \ge 1$, where 0_n is the $n \times n$ zero matrix.
 - (a) Find $\det(I_n + A)$. Here I_n is the identity $n \times n$ -matrix.
 - (b) Show that if A is a nilpotent $n \times n$ matrix, then $A^n = 0$.
- 3. Let A and B nonsingular square complex matrices and suppose that $AB = BA^2$.
 - (a) Prove that if λ is an eigenvalue of A, then $\lambda^m = 1$ for some m.
 - (b) Prove that for some $n \geq 1$, A and B^n have a common eigenvector.

Department of Mathematics Qualifying Examination Fall 2005

Part II: Real Analysis

- Do any four of the problems in Part II.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.
- 1. Assume that f and g are in $L^1(\mathbf{R})$ and $\int_E f \, d\mu = \int_E g \, d\mu$ for every Lebesgue-measurable set $E \subset \mathbf{R}$. (Here, μ denotes Lebesgue measure.) Prove f = g almost everywhere in \mathbf{R} .
- 2. Let $F(t) = \int_{-\infty}^{\infty} f(x,t) dx$ for all t in some interval I. It would then be useful to say

$$F'(t) = \int_{-\infty}^{\infty} \frac{\partial f}{\partial t}(x, t) \, dx$$

for all $t \in I$. State hypotheses for which this statement is true, and prove this statement. Use hypotheses and a proof that have a "real analysis", or "Lebesgue", flavor. Partial credit will be given for using "advanced calculus" concepts such as uniform continuity and uniform convergence. (Give hypotheses which apply to a broad class of functions; for example, do not just assume something like $\partial f/\partial t = 0$.)

Continued on next page

3. (a) Let f be a continuous real-valued function on [0, 1]. Show that there exists a sequence of polynomials p_1, p_2, \cdots such that

$$\lim_{n \to \infty} p_n(x^2) = f(x)$$

uniformly on [0, 1].

- (b) Show, by way of example, that no such sequence of polynomials may exist if the interval [0, 1] is replaced by [-1, 1].
- 4. (a) State a sequence f_1, f_2, f_3, \ldots of Riemann-integrable functions on [0, 1] which is a Cauchy sequence in $L^1[0, 1]$ but does *not* converge in L^1 to any Riemann-integrable function. Prove that your example has the required properties.
 - (b) Prove or give a counterexample of the following statement. Suppose f_1 , f_2 , f_3 , ... is a sequence of Lebesgue-integrable functions on [0, 1] which converges pointwise to a function f on [0, 1], almost everywhere. Then

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.$$

If you give a counterexample, prove that your counterexample has the required properties.

5. Let $\langle X, \rho \rangle$ be a compact metric space and $\beta > 0$. A real-valued function f on X is said to be uniformly β -continuous if f has no jumps greater than β . To be precise, for each $\epsilon > 0$ there is a $\delta > 0$ so that $\rho(x,y) < \delta$ implies $|f(x) - f(y)| < \beta + \epsilon$. Suppose that $f_n \to f$ uniformly on X and that f_n is β_n -continuous with $\beta_n = 1/n$, for each $n \geq 1$. Must f be continuous? Prove your assertion.

Continued on next page

6. The differential equation y'(x) = f(x, y(x)) for 0 < x < 1, together with the initial condition $y(0) = y_0$, can be written in the integral form

$$y(x) = y_0 + \int_0^x f(t, y(t)) dt$$

for $0 \le x \le 1$. Assume that there exists a constant L, with 0 < L < 1, such that $|f(t,y_1)-f(t,y_2)| \le L|y_1-y_2|$ for all $t \in [0,1]$ and all real y_1 and y_2 . Prove that, for given y_0 , there exists a unique function y in C[0,1] which satisfies the above integral form. (You may use, without proof, the fact that C[0,1] is complete with respect to the norm $\|\cdot\|_{\infty}$ defined by $\|f\|_{\infty} = \max_{0 \le x \le 1} |f(x)|$.)