Department of Mathematics Qualifying Examination Fall 2006

Part I: Real Analysis

- Do any four of the problems in Part I.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

- 1. The Fourier transform of a function $f \in L^1(\mathbf{R})$ is the function \hat{f} defined by $\hat{f}(y) = \int_{-\infty}^{\infty} f(x)e^{-iyx}dx$.
 - (a) Prove that the function \hat{f} is continuous on \mathbf{R} , for all $f \in L^1(\mathbf{R})$.
 - (b) Prove that if $f \in L^1(\mathbf{R})$ and f has compact support, then $\hat{f} \in C^{\infty}(\mathbf{R})$. As part of your solution, you will need to justify differentiation under the integral sign. (Here, "f has compact support" means that there exists a compact set $K \subset \mathbf{R}$ such that f(x) = 0 for all $x \notin K$, and " $\hat{f} \in C^{\infty}(\mathbf{R})$ " means that \hat{f} has continuous derivatives of all orders.)
- 2. A point x in a metric space is called isolated if the set $\{x\}$ is open.
 - (a) Prove that a point x in a metric space X is isolated if and only if there exists $\epsilon > 0$ such that $\rho(x,y) \ge \epsilon$ for all $y \in X$ with $y \ne x$. Here, ρ is the metric on X.
 - (b) Prove that a complete metric space without isolated points has an uncountable number of points.
- 3. Let $f \in L^1(\mathbf{R})$, and for each positive integer n define $f_n(x) = f\left(x + \frac{1}{n}\right)$ for all real x. Prove that $f_n \to f$ in $L^1(\mathbf{R})$ as $n \to \infty$.

Hint. You may use the fact, without proving it, that the set of continuous functions with compact support is dense in $L^1(\mathbf{R})$.

Continued on next page

4. Assume that a real-valued function g is continuous and differentiable on an open interval containing [0,1], and assume that there exist constants c_1 and c_2 so that $0 < c_1 \le g'(x) \le c_2$ for all $x \in [0,1]$. Prove $\mu(g(E)) = \int_E g'(x) dx$ for every Lebesgue-measurable set $E \subset [0,1]$. Here, μ denotes Lebesgue measure, and g(E) denotes the set of all g(x) for $x \in E$.

Hint. Start with open intervals.

5. Prove that the space $L^{\infty}[0,1]$ is not separable, when regarded as a metric space with the metric induced by the norm $\|\cdot\|_{\infty}$ (essential supremum, or, essentially bounded.)

Hint. Use functions f_{α} defined by $f_{\alpha}(x) = 1$ if $x \leq \alpha$ and $f_{\alpha}(x) = 0$ if $x > \alpha$.

6. For $f \in L^1(\mathbf{R}^2)$ one defines the Radon transform of f as follows.

$$Rf(\theta, s) = \int_{-\infty}^{\infty} f(s\theta + t\theta^{\perp}) dt$$

where θ and θ^{\perp} are two unit vectors orthogonal to each other and $s \in \mathbf{R}$. In other words, $Rf(\theta, s)$ is the integral of f over the line with direction θ^{\perp} whose closest point to the origin is equal to $s\theta$.

When solving this problem you may assume without proof that the Lebesgue integral $\int_{\mathbb{R}^2} f(x) dx$ is invariant under rotations of the coordinate system.

- (a) Let θ be given. Show that $Rf(\theta, s)$ exists for almost every $s \in \mathbf{R}$.
- (b) The (n-dimensional) Fourier transform of a function $f \in L^1(\mathbf{R}^n)$ is the function \hat{f} defined

by $\hat{f}(y) = \int_{\mathbb{R}^n} f(x)e^{-i\langle x,y\rangle} dx$, where $\langle x,y \rangle = \sum_{i=1}^n x_i y_i$ denotes the inner product of x and y.

For fixed θ let $g(s) = Rf(\theta, s)$. Prove the following relation between the (one-dimensional) Fourier transform of g and the (two-dimensional) Fourier transform of f:

$$\hat{g}(\sigma) = \hat{f}(\sigma\theta)$$
, for all $\sigma \in \mathbf{R}$.

Department of Mathematics Qualifying Examination Fall 2006

Part II: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part: Complex Analysis

- 1. (a) Find the Laurent series of $\frac{1}{z^2(1-z)}$ when 0 < |z| < 1.
 - (b) Find the Laurent series of $\frac{1}{z^2(1-z)}$ when $1 < |z| < \infty$.
 - (c) Find the Laurent series of $\frac{1}{z^2(1-z)}$ when 0 < |z-1| < 1.
- 2. Suppose that a function f is analytic inside and on a positively oriented simple closed contour C and that it has no zero on C. Show that if f has n zeros, z_1 , z_2, \dots, z_n inside C, where each z_k is of multiplicity m_k , then

$$\oint_C \frac{z^3 f'(z)}{f(z)} dz = 2\pi i \sum_{k=1}^n m_k z_i^3.$$

3. Use the residue theorem to evaluate the integral

$$\int_{-\infty}^{\infty} \frac{1}{1 + x^{2n}} \ dx$$

where n is a positive integer.

Continued on next page

Part: Linear Algebra

- 1. Consider the set $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$, with addition and multiplication induced by $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$.
 - (a) Show that $\mathbb{Q}(\sqrt{2})$ is a vector space over \mathbb{Q} , with (ordered) basis $\mathcal{B} = (1, \sqrt{2})$.
 - (b) Let $\alpha = x + y\sqrt{2}$ be an element of $\mathbb{Q}(\sqrt{2})$. Define the function

$$T_{\alpha}: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$

 $v \mapsto \alpha v$,

where αv denotes the multiplication of v by α . Show that T_{α} is a linear transformation.

- (c) Determine the set of $\alpha \in \mathbb{Q}(\sqrt{2})$ such that the characteristic polynomial of T_{α} does *not* equal the minimal polynomial of α .
- 2. Let A be a real $n \times n$ matrix. Let M denote the maximum absolute value of the eigenvalues of A.
 - (a) Give a statement of the Spectral Theorem.
 - (b) Prove that if A is symmetric, then for all $x \in \mathbb{R}^n$, the Euclidean norm of Ax is at most M times the Euclidean norm of x.
 - (c) Show that this is false in general when the restriction symmetric is removed.

Continued on next page

- 3. Suppose that T is a linear transformation on a complex finite dimensional vector space V with distinct eigenvalues.
 - (a) Suppose the dimension of the vector space V is n. Show that there is a cyclic vector for T, that is a vector w so that $\{w, Tw, T^2w, \cdots, T^{n-1}w\}$ forms a basis for V.
 - (b) Give a complete description of the matrix that represents T with respect to this basis for V.

Remark: You may use the following theorem **without** giving a proof. Theorem: Suppose a_1, a_2, \dots, a_n are n distinct complex numbers. Let

$$A = \begin{pmatrix} 1 & 1 & 1 & \cdots & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & \cdots & a_n^2 \\ a_1^3 & a_2^3 & a_3^3 & \cdots & \cdots & a_n^3 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & \cdots & a_n^{n-1} \end{pmatrix}$$

Then the determinant of the matrix, A, is not zero.