
Department of Mathematics
Qualifying Examination Fall Term 1998

Part I (Real Analysis):
Do any four of the problems in Part I. Your solutions should consist of clear

complete explanations that include all essential mathematical details. You have
three hours to complete Part I of the exam.

1. Let {fn} be a sequence of continuous real-valued functions on [0, 1] . Are the
following statements true? If so, give a proof. If not, give a counterexample.
(a) If fn → 0 in the L1 norm on [0, 1], then fn → 0 in the L2 norm on [0, 1].
(b) If fn → 0 in the L2 norm on [0, 1], then fn → 0 in the L1 norm on [0, 1].

2. The norm of a linear functional L : H → R on a Hilbert space H is defined
by

kLk = sup
kxk=1

|Lx|

where kxk = phx, xi and hx, xi is the inner product in H. Establish the
following equivalent formulas for the norm of L:

kLk = sup
kxk≤1

|Lx| = sup
x 6=0

|Lx|
kxk = inf {M : |Lx| ≤M kxk for all x} .

3. Let (X, d) and (Y, e) be metric spaces with (Y, e) complete.
(a) Prove: If A ⊆ X then any uniformly continuous function f : A→ Y can
be extended to a continuous function g : A → Y on the closure of A in X,
and that the extension g is uniformly continuous.
(b) Provide an example to show that uniform continuity in needed in part
(a) by exhibiting specific metric spaces (X, d) and (Y, e) , a subset A of X,
and a continuous function f : A → Y such that the continuous function
does not have a continuous extension to the closure of A into Y.

4. (a) State the Banach Contraction Mapping Fixed Point Theorem.
(b) A mathematical model for the transverse equilibrium displacement y =
y(x) of an elastic string with ends pinned is given by (assume this)

y(x) =

Z 1

0

G(x, s)f(s, y(s)) ds (1)



whereG(x, s), the so-called Green’s function for the problem, satisfiesG(x, s) ≥
0 for 0 ≤ x, s ≤ 1, R 1

0
G(x, s) ds = x (1− x) /2 for 0 ≤ x ≤ 1, and f(x, y) is a

continuous forcing term. Use the contraction mapping fixed point theorem
to prove that (1) has a unique continuous solution y = y(x) if f satisfies
the Lipschitz condition |f(x, y)− f(x, z)| ≤ L |y − z| with L < 8. Be sure
to explain carefully why all the hypotheses in the fixed point theorem are
satisfied. What operator do you use? On what space does it act?

5. Let f be a real-valued function in L1 (−∞,∞). The Fourier transform of f
is the function bf(ω) = Z ∞

−∞
eiωxf(x) dx

defined for all real ω for which the integral exists and is finite.
(a) What is the domain of bf? That is, for which real ω does the foregoing
integral exist and have a finite value.
(b) Prove or disprove: bf is continuous on its domain.
(c) If f(x) = 1 for x ∈ [a, b] and f(x) = 0 otherwise, show that bf(ω)→ 0 as
ω →∞.
(d) Establish the conclusion in (c) for any f in L1 (−∞,∞) . Hint. Step
functions are dense in L1 (−∞,∞) .

6. Let F be a set of differentiable functions f : [0, 1] → R with f(0) = 0
and whose derivatives are uniformly bounded in the sense that there is a
constant M such that |f 0(x)| ≤M for all f in F and all x in (0, 1) .
(a) Show that F is an equicontinuous family of functions.
(b) Show that F has compact closure in the space C ([0, 1] ,R) of continuous
real-valued functions on [0, 1] with the sup metric (sup norm). Explain
briefly.
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Part II (Complex Analysis and Linear Algebra):
A complete exam consists of four problems with two problems chosen from

Part CA and two problems chosen from Part LA. Your solutions should consist of
clear complete explanations that include all essential mathematical details. You
have three hours to complete Part II of the exam.

Part CA

1. Use the residue theorem to evaluate the integral:Z ∞

−∞

cosx

x2 + a2
dx where a > 0.

2. Let f(z) be analytic function in the entire complex plane. Suppose there
exist real numbers M and α ≥ 0 such that |f(z)| ≤ M (1 + |z|)α. Prove
that f(z) is a polynomial of degree less than or equal to α.

3. Let f(z) and g(z) be analytic functions in the open disc |z| < 2. Assume (a)
|f(z)| ≥ |g(z)| for any z with |z| = 1 and (b) f(z) is not zero for any z with
|z| < 1. Prove that |f(z)| ≥ |g(z)| for any z with |z| < 1. Give an example
which shows that this conclusion is not true without assumption (b).

Part LA

1. Let V be a vector space and T : V → V a linear transformation.
(a) Suppose V is finite dimensional. Prove that T is one-to-one if and only
if T is onto.
(b) Suppose V is infinite dimensional and T is one-to-one. Can we conclude
T is onto? Give a proof or a counterexample.
(c) Suppose V is infinite dimensional and T is onto. Can we conclude T is
one-to-one? Give a proof or a counterexample.

2. Let A be a 2 × 2 matrix with real entries such that A2 − A + (1/2)I = O,
where I is the 2× 2 identity matrix and O is the 2× 2 zero matrix. Prove
that An → O as n→∞.
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3. Let A and B be n× n complex matrices such that AB = BA.
(a) Let λ be an eigenvalue of A and let W be the λ eigenspace of A, that is,
the space of vectors w such that Aw = λw. Show that B(W ) ⊂W .
(b) Show that A and B have a common eigenvector.
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