Department of Mathematics Qualifying Examination Fall Term 1999

Part I: Real Analysis

Do any four of the problems in Part I. Your solutions should include all essential mathematical details; please write them up as clearly as possible. You have three hours to complete Part I of the exam.

- 1. Suppose $\{f_n\}$ is a sequence of continuous real-valued functions $[0,1] \longrightarrow \mathbf{R}$ such that $f_n \longrightarrow 0$ almost everywhere on [0,1]. Can we conclude that $f_n \longrightarrow 0$ in the L^2 -norm on [0,1]? If the answer is "yes", give a proof. If the answer is "no", give a counterexample.
- 2. Let $f:[0,1] \longrightarrow [0,\infty)$ be a Lebesgue measurable function. Prove that

$$\lim_{p\to\infty} ||f||_p = ||f||_{\infty} ,$$

where, as usual, $||f||_p = (\int_0^1 |f|^p)^{1/p}$ and $||f||_{\infty} = \text{esssup}_{0 \le x \le 1} |f(x)|$.

- 3. Is there an uncountable collection of non-overlapping subsets of the real plane such that each subset has positive Lebesgue measure? Give an example of such a collection or prove that one does not exist.
- 4. Suppose that f is continuously differentiable on [0,1] such that $\sup_{x\in[0,1]}|f'(x)|=M<\infty$. Prove that

$$|\int_0^1 f(x)dx - \sum_{i=1}^n f(i/n) \cdot 1/n| \le M/n$$
.

5. Let S be the set of equivalence classes of Cauchy sequences in a metric space (X, d) where the equivalence relation is defined by

$$(x_n) \sim (y_n)$$
 if $\lim_{n \to \infty} d(x_n, y_n) = 0$.

Define a distance function between two equivalence classes of Cauchy sequences $[(x_n)]$ and $[(y_n)]$ by

$$\rho([(x_n)], [(y_n)]) = \lim_{n \to \infty} d(x_n, y_n).$$

Prove that ρ is well defined and is a metric.

- 6. (a) State the Lebesgue Dominated Convergence Theorem.
 - (b) Let $g: \mathbf{R} \longrightarrow \mathbf{R}$ be a Lebesgue integrable function. Prove that $G(x) = \int_0^x g(t) dt$ is a continuous function $\mathbf{R} \longrightarrow \mathbf{R}$.

Department of Mathematics Qualifying Examination Fall Term 1999

Part II: Complex Analysis and Linear Algebra

Do any two problems in Part CA and any two problems in Part LA. Your solutions should include all essential mathematical details; please write them up as clearly as possible. You have three hours to complete Part II of the exam.

Part CA

1. Use the residue theorem to evaluate the integral

$$\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} \, dx \; .$$

2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an analytic function in the entire complex plane. Show that for any r > 0

$$|a_n| \le \frac{M_r}{r^n}$$
,

where M_r is defined as $\max_{|z|=r} |f(z)|$.

3. Let $f: \mathbf{C} \longrightarrow \mathbf{C}$ be the the transformation of the complex plane given by $f: z \mapsto w = 1/z$. Show that the image of the line y = x - 1 is the circle $u^2 + v^2 - u - v = 0$ and the image of the line y = 0 is the line v = 0. (Here z = x + yi and w = u + vi.) Is the mapping f conformal at the point z = 1?

Part LA

1. Let H by a 3-dimensional vector subspace of \mathbb{R}^4 given by

$$\{(x_1, x_2, x_3, x_4) : x_1 + x_2 - x_3 - x_4 = 0\}$$

and let $T: \mathbf{R^4} \longrightarrow \mathbf{R^4}$ be the linear transformation given by reflection across H.

- (a) What is the matrix of T in the standard basis of \mathbb{R}^4 ?
- (b) What are the eigenvalues of T? What are their multiplicities?
- 2. Let A be a nonzero $n \times n$ nonzero complex matrix and $0_{n \times n}$ be the $n \times n$ zero matrix. Determine whether the following statements are true or false. In each case give a proof or a counterexample.
 - (a) If $A^n = 0_{n \times n}$ then $Ker(A) \cap Range(A) \neq (0)$.

- (b) If $Ker(A) \cap Range(A) \neq (0)$ then $A^n = 0_{n \times n}$.
- (c) If λ is an eigenvalue of A then λ^2 is an eigenvalue of A^2 .
- (d) If λ^2 is an eigenvalue of A^2 then λ or $-\lambda$ is an eigenvalue A (possibly both).
- 3. Let V be a finite-dimensional real vector space and let (,) be a positive-definite inner product on V. Show that elements $v_1, \ldots, v_m \in V$ are linearly independent if and only if the $m \times m$ -matrix $A = (a_{ij})$ given by $a_{ij} = (v_i, v_j)$ is non-singular.