Department of Mathematics Qualifying Examination Fall 2001

Part I: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part CA

1. Find the Laurent expansion $\sum_{n=-\infty}^{\infty} a_n z_n$ of the function

$$f(z) = \frac{1}{(z-1)(z-2)}$$

- (a) in the region 1 < |z| < 2;
- (b) in the region |z| > 2.
- 2. Use the Cauchy Integral Formula to prove that if a function f(z) is analytic in a domain D and if z_0 is a point of D, then f(z) has a power series expansion in some open disk centered at z_0 . (Do not appeal directly to Taylor's theorem or Laurent's theorem.) State explicitly any other standard theorems that are needed to justify your solution.
- 3. Let f(z) be an analytic function in an open region of **C** containing the closed unit disc D. Suppose f(0) = 1 and |f(z)| > 1 whenever |z| = 1. Show that f(z) has a zero in D.

Part LA

- 1. Suppose $A=\left[\begin{array}{cc} 0 & 2 \\ -3 & 5 \end{array}\right]$. Find $A^{10,000}$. Justify your answer.
- 2. Let V be an n-dimensional complex inner product space, T be a linear operator on V, W be a T-invariant subspace of V with dim W=m, and T^* be the adjoint of T.
 - (a) Give an example to show that W need not be T^* -invariant. Verify that your example is T-invariant but not T^* -invariant.
 - (b) Assume that W is both T and T^* -invariant. Show there exists a basis β for V such that the matrices of T and T^* with respect to β , $[T]_{\beta}$ and $[T^*]_{\beta}$, have the forms

$$[T]_{\beta} = \left[\begin{array}{cc} A & O \\ O & B \end{array} \right] \qquad \text{and} \qquad [T^*]_{\beta} = \left[\begin{array}{cc} C & O \\ O & D \end{array} \right]$$

where A and C are $m \times m$ matrices and B and D are $(n-m) \times (n-m)$ matrices.

- 3. Suppose $n \times n$ complex matrices A and B have the same characteristic polynomial p(x) and the same minimal polynomial q(x). (Of course, p(x) may not be equal to q(x).) Can we conclude that A and B are similar (i.e., $A = CBC^{-1}$ for some invertible $n \times n$ -matrix C),
 - (a) if n = 3?
 - (b) if n = 4?

In each part give a proof or a counterexample.

Department of Mathematics Qualifying Examination Fall 2001

Part II: Real Analysis

- Do any four of the problems in Part II.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.
- 1. Let $f: X \to X$ be a map from a metric space into itself. A point $z \in X$ is a fixed point of f if f(z) = z. Let $\varepsilon > 0$. A point $w \in X$ is an ε -fixed point of f if $d(f(w), w) < \varepsilon$.
 - (a) Prove: If X is a compact metric space, $f: X \to X$ is a continuous function, and if for every $\varepsilon > 0$ f has an ε -fixed point, then f has a fixed point.
 - (b) Prove the following statement or give a counter example: If X is a metric space, $f: X \to X$ is a continuous function, and if for every $\varepsilon > 0$, f has an ε -fixed point, then f has a fixed point.
- 2. Let $f \in L^p(\mathbf{R})$ for some $1 \le p < \infty$.
 - (a) Show that

$$\lim_{x \to \infty} \int_{x}^{x+1} f(t) dt = 0.$$

(b) Show, by way of example, that the assertion of part (a) may fail if $p=\infty$.

3. Two norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ on a vector space V are equivalent if there are positive constants m and M such that

$$m \|x\|_{\alpha} \le \|x\|_{\beta} \le M \|x\|_{\alpha}$$

for all $x \in V$.

(a) Prove that any two norms on \mathbb{R}^n are equivalent. *Hint*. For any norm $\|\cdot\|$ on \mathbb{R}^n consider the function $f(x) = \|x\|$ on the set

$$\left\{ x = (x_1, ..., x_n) : \sum_{i=1}^n |x_i| = 1 \right\}.$$

(b) Show that the following norms on C[0,1], the continuous real-valued functions on [0,1], are not equivalent:

$$\|f\| = \max_{[0,1]} |f(x)|$$
 and $\|f\|_1 = \int_0^1 |f(x)| dx$

- 4. Let f be an L^1 -function on $[0, \infty)$.
 - (a) Show that if f is uniformly continuous on $[0, \infty)$ then

$$\lim_{t \to \infty} f(t) = 0.$$

(b) Show, by way of example, that the conclusion of part (a) may fail if f is assumed to be continuous (and L^1) but not uniformly continuous on $[0, \infty)$.

5. Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ be a non-negative L^{p_0} function, where $0 < p_0 < \infty$. Show that

$$\lim_{p\to0^{+}}\int_{R}f^{p}\,d\nu=\nu\left(\left\{ x\in X:f\left(x\right)\neq0\right\} \right)$$

where ν is the usual Lebesgue measure on the real line.

Hint: Write

$$\int_{\mathbf{R}} f^p d
u = \int_{X_0} f^p d
u + \int_{X_1} f^p d
u + \int_{X_2} f^p d
u \,,$$

where $X_0 = \{x \in \mathbf{R} : f(x) = 0\}, X_1 = \{x \in \mathbf{R} : 0 < f(x) < 1\}, \text{ and } X_2 = \{x \in \mathbf{R} : f(x) \ge 1\}.$

6. Let V be the inner product space of all continuous real-valued functions on [-1,1] with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$$
.

Let W be the subspace of V consisting of odd functions, i.e., $h \in V$ lies in W if and only if h(-x) = -h(x). Find the orthogonal complement W^{\perp} of W. Justify your answer.