Department of Mathematics Qualifying Examination Fall 2002

Part I: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part CA

1. Let C_r be the circle in the complex plane with center at the origin and radius r traversed once in the counterclockwise sense. Let r > 0 and $r \neq 2$. Find all possible values of the integral

$$I_r = \int_{C_r} \frac{z^2 + e^z}{z(z-2)^2} dz$$

- 2. Let f(z) = u(x, y) + iv(x, y), where z = x + iy, be a complex function on a open set U in the complex plane.
 - (a) If f(z) is analytic in U show that the Cauchy-Riemann equations hold at each point in U.
 - (b) **State** but do **not** prove a reasonable converse of part (a).
 - (c) Using the Cauchy-Riemann equations prove: If f(z) is analytic and real-valued in a connected, open set U, then f is constant in U.

- 3. Let $f(z) = \cot z$.
 - (a) Determine the region in the complex plane where f is analytic.
 - (b) If f has any singularities find them all and state their types (removable, pole, or essential singularity) and in the case of poles find their orders.
 - (c) Explain briefly why f(z) has a power series expansion about 1+i and find the radius of convergence of the power series.
 - (d) f has a Laurent series expansion $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ in the annulus $\pi < |z| < 2\pi$. Evaluate a_n for $n = -1, -2, -3, \dots$.

Part LA

- 1. A matrix B is said to be a square root of a matrix A if $B^2 = A$. A matrix is Hermitian if it equals it transpose conjugate: $\overline{A^T} = A$.
 - (a) Give an example of a complex matrix A which does not have a square root. Be sure to show that your example has the desired property.
 - (b) Prove that every complex Hermitian matrix has a square root.
- 2. Determine, up to similarity, all 3×3 complex matrices A such that $A^3 = A^2$.
- 3. Let V be a finite dimensional complex vector space and let A and B be subspaces of V. You may use the following three standard (and easily proven facts) in what follows: (i) $A+B=\{a+b:a\in A,b\in B\}$ is a subspace of V, (ii) $A\cap B$ is a subspace of V, and (iii) $\dim(A+B)=\dim A+\dim B-\dim(A\cap B)$. Now suppose that A,B,A',B' are subspaces of V such that $\dim A=\dim A'$, $\dim B=\dim B'$, and $\dim(A\cap B)=\dim(A'\cap B')$. Prove that there exists a one-to-one linear operator T on V such that T(A)=A' and T(B)=B'.

Department of Mathematics Qualifying Examination Fall 2002

Part II: Real Analysis

- Do any four of the problems in Part II.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.
- 1. Let (X, ρ) be a metric space, D be a dense subset of X, and let $f: D \to \mathbb{R}$ be a uniformly continuous function on D.
 - (a) Prove: There exists a uniformly continuous function $g: X \to \mathbb{R}$ such that g(d) = f(d) for all $d \in D$. In other words, f can be extended to a uniformly continuous function on all of X.
 - (b) Proof or counterexample: The extension g of f in (a) is unique.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that if A is a Borel set in \mathbb{R} , then its inverse image $f^{-1}(A)$ is a Borel set in \mathbb{R} .
- 3. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable function with

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty.$$

Prove that

$$h(x) = \int_{x}^{1+x} f(t) dt$$

is a continuous function of x.

- 4. Let X be a metric space.
 - (a) Define the term X is **compact**.
 - (b) Define two properties of a metric space X that are equivalent to compactness. (Do NOT give any proofs.)
 - (c) Let C_n be a sequence of nonempty closed sets in a compact metric space X such that $C_{n+1} \subset C_n$ for n = 1, 2, 3, Prove or disprove: $\bigcap_{n=1}^{\infty} C_n$ is nonempty.
 - (d) Let $f_n(x) = \sum_{k=0}^n \frac{x^k}{k^2}$ for $x \in [0,1]$. Show that the sequence of functions $f_n(x)$ converges pointwise on [0,1] to a limit function f(x).
 - (e) Prove or disprove: The limit function f(x) from (d) is continuous.
- 5. Let ϕ be a positive, smooth (i.e., C^{∞}) function. Suppose ϕ vanishes outside a compact subset of $\{x \in \mathbb{R} : |x| < 2\}$ and satisfies $\phi(x) = 1$ if |x| < 1. Let f be a function in $L^2(\mathbb{R})$. Define the convolution operator

$$f * \phi(x) = \int_{\mathbb{R}} f(x - y)\phi(y)dy.$$

- (a) Prove or disprove $f * \phi \in L^1(\mathbb{R})$ for all $f \in L^1(\mathbb{R})$.
- (b) Prove or disprove $f * \phi \in L^2(\mathbb{R})$ for all $f \in L^2(\mathbb{R})$.
- 6. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a bounded Lebesgue measurable function that vanishes (is equal to zero) outside a compact subset of \mathbb{R} . Prove that

$$\int_{-\infty}^{\infty} |f(x+t) - f(t)| dt \to 0 \text{ as } x \to 0.$$