
Department of Mathematics OSU
Qualifying Examination

Fall 2015

PART I : Real Analysis

• Do any four of the six problems in Part I. Indicate on the sheet with your identifi-
cation number the four which you wish graded.

• Your solutions should contain all mathematical details. Please write them up as
clearly as possible.

• Explicitly state any standard theorems, including hypotheses, that are necessary to
justify your reasoning.

• You have three hours to complete Part I.

• On problems with multiple parts, individual parts may be weighted differently in
grading.

• When you are done with the examination, place examination blue book and selection
sheet into the unmarked, smaller envelope. You will hand in all materials. If you
use extra examination books, be sure to place your code number on them.
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1. Let ‖ · ‖ be a norm on Rn. Do not assume any properties of ‖ · ‖, other than those
that follow from the general definition of norm on a vector space.

(a) Let f(x) = ‖x‖ for all x ∈ Rn. Show that f is continuous on Rn with respect
to the metric ρ defined by ‖ · ‖, i.e., ρ(x, y) = ‖x − y‖ for all x and y in Rn. (Use
the triangle inequality.)

(b) Now define a different norm ‖ ·‖1 by ‖x‖1 =
∑n

i=1 |xi| for all x ∈ Rn. Prove that
the function f defined in part (a) is continuous with respect to the metric defined
by ‖ · ‖1. (You do not need to prove that ‖ · ‖1 satisfies all of the axioms of a norm.)

(c) Show that the norms ‖·‖ and ‖·‖1 are equivalent. That is, show that there exist
positive constants M1 and M2 such that M1‖x‖1 ≤ ‖x‖ ≤ M2‖x‖1 for all x ∈ Rn.
(Hint. Consider what happens when f is restricted to the set S = {x ∈ Rn : ‖x‖1 =
1}.)
(d) Give an example of a linear space (vector space) X and two norms on X that
are not equivalent, in the sense defined in part (c).

2. Define the convolution of two functions f and g by

(f ∗ g)(x) =

∫ ∞

−∞
f(x− y)g(y)dy =

∫ ∞

−∞
f(y)g(x− y)dy,

assuming that the integrals exist. Let φ be a continuous function on R that satisfies
φ(x) > 0 for −1 < x < 1, φ(x) = 0 otherwise, and

∫∞
−∞ φ(x)dx = 1. For each integer

n ≥ 1, let φn(x) = nφ(nx) for all real x. Then
∫∞
−∞ φn(x)dx = 1 for all n, φn is

nonzero on the interval (−1/n, 1/n), and as n increases the graph of φn becomes
narrow and tall. The convolution (f ∗ φn)(x) is therefore a weighted average of
values of f(y) for y near x.

Prove that if f ∈ L1(R), then f ∗ φn → f in L1(R) as n →∞. (That is, ‖f ∗ φn −
f‖1 → 0 as n →∞.)

Suggestion. First consider the case where f is continuous and has compact support,
and then extend to L1(R).

3. Let f : R → R be defined by

f(x) =

π∫
0

sin(xt)

t
dt.

Prove that f is a bounded function.
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4. Consider the following minimization problem in Lp[0, 1], where 1 ≤ p ≤ ∞:

min
u∈U

J(u), J(u) :=

∫ 1

0

f(u(s))ds,

where f : R → [0, +∞) is continuous, and U is a nonempty, compact subset of
Lp[0, 1].

The goal is to prove the existence of a minimizer u∗ in U for the functional J .

[Note: Part (a) and (b) can be solved separately, but part (b) requires the use of
the result in part (a).]

(a) Prove that J is lower semicontinuous: if un → u in Lp[0, 1], then

J(u) ≤ lim inf
n

J(un). (1)

(b) Show that a minimizer u∗ for J , exists.

5. Let f : R → R be a convex function:

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all λ ∈ [0, 1], x, y ∈ R.

(i.) Show that if a < b < c, then

f(b)− f(a)

b− a
≤ f(c)− f(b)

c− b
.

(ii.) Prove that f(x) is Lipshitz on [−1, 1], i.e. there exists M > 0 such that∣∣f(y)− f(x)
∣∣ ≤ M |y − x| for all x, y ∈ [−1, 1].

6. Set R+ = [0, +∞). It is known that if a function f : R+ → R is uniformly continu-
ous, and that f ∈ L1(R+), then

lim
x→+∞

f(x) = 0.

Accept this result without proving it.

Give counterexample in case uniform continuity is relaxed to continuity.
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