Event Detail

Event Type: 
Mathematical Biology Seminar
Wednesday, March 2, 2022 - 16:00 to 16:50
Kidd 236

Speaker Info

UT-San Antonio

Malaria is one of the deadliest infectious diseases globally, causing hundreds of thousands of deaths each year. It disproportionately affects young children, with two-thirds of fatalities occurring in under-fives. Individuals acquire protection from disease through repeated exposure, and this immunity plays a crucial role in the dynamics of malaria spread. We develop a novel age-structured PDE malaria model, which couples vector-host epidemiological dynamics with immunity dynamics. Our model tracks the acquisition and loss of anti-disease immunity during transmission and its corresponding nonlinear feedback onto the transmission parameters. We derive the basic reproduction number R0 as the threshold condition for the stability of disease-free equilibrium; we also interpret R0 probabilistically as a weighted sum of cases generated by infected individuals at different infectious stages and different ages. We parametrize our model using demographic and immunological data from sub-Saharan regions. Numerical bifurcation analysis demonstrates the existence of an endemic equilibrium, and we observe a forward bifurcation in R0. Our numerical simulations reproduce the heterogeneity in the age distributions of immunity profiles and infection status created by frequent exposure. Motivated by the recently approved RTS,S vaccine, we also study the impact of vaccination; our results show a reduction in severe disease among young children but a small increase in severe malaria among older children due to lower acquired immunity from delayed exposure.

This is a joint work with Denis Patterson, Lauren Childs, Christina Edholm, Joan Ponce, Olivia Prosper and Lihong Zhao.