Event Type:

Applied Mathematics and Computation Seminar

Date/Time:

Friday, April 3, 2009 - 05:00

Location:

Gilkey 113

Guest Speaker:

Institution:

OSU Electrical Engineering and Computer Science

Abstract:

Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits and separatrices which are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG).

While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually result in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs.

We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional tradeoffs between the quality of the MCG's and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation datasets.