Reduced Order Modeling in the Age of Data
Reduced Order Modeling in the Age of Data
Data-driven modeling of complex dynamical systems is becoming increasingly popular across various domains of science and engineering. In this talk, I will introduce a systematic multiscale data-driven closure reduced order model (ROM) framework for complex systems with strong chaotic or turbulent behavior. I will utilize available data to construct novel ROM closure terms, thereby capturing the interaction between resolved and unresolved modes. Next, I will explain how the new data-driven closure ROM can be integrated with a conditional Gaussian data assimilation framework that employs cost-effective, conditionally linear functions to capture the statistical features of the closure terms. This leads to the stochastic data-driven closure ROM that facilitates an efficient and accurate scheme for nonlinear data assimilation (DA), the solution of which is provided by closed analytic formulae that do not require ensemble methods. It also allows the ROM to avoid many potential numerical and sampling issues in recovering the unobserved states from partial observations. Furthermore, I will introduce a hybrid DA algorithm for complex dynamical systems with partial observations. The method exploits cheap stochastic parameterized ROMs for filtering the observed state variables, significantly reducing the computational cost. It also uses machine learning to build a nonlinear map between observed and unobserved state variables, which enables the efficient computation of the ensemble members of the unobserved states. The hybrid DA algorithm is successfully applied to a precipitating quasi-geostrophic (PQG) model, which includes the effects of water vapor, clouds, and rainfall beyond the classical two-level QG model.