Event Type:

Mathematical Biology Seminar

Date/Time:

Wednesday, February 1, 2017 - 16:00 to 17:00

Location:

GILK 115

Abstract:

This talk deals with front propagation dynamics of monostable equations with nonlocal dispersal in spatially periodic habitats. We show that a general spatially periodic monostable equation with nonlocal dispersal has a unique spatially periodic positive stationary solution and has a spreading speed in every direction. In this talk, we also show that a spatially periodic nonlocal monostable equation with certain spatial homogeneity or small nonlocal dispersal distance has a unique stable periodic traveling wave solutions connecting its unique spatially periodic positive stationary solution and the trivial solution in every direction for all speeds greater than the spreading speed in that direction. In the end, we will discuss some open problems in population dynamics.