Event Type:

Number Theory Seminar

Date/Time:

Tuesday, January 22, 2019 - 16:00 to 16:45

Location:

STAG 160

Guest Speaker:

Institution:

Reed College

Abstract:

The paramodular conjecture pairs abelian surfaces and paramodular forms,

the 2-dimensional counterparts of the elliptic curves and elliptic modular

forms that correspond in the modularity theorem. As with modularity, the

level of the form matches the conductor of the surface. The paramodular

correspondence is now established for some particular levels, including

the nonprime level 731, where a computational result was required to

complete the analytic argument. This talk will be a quick overview of

paramodular forms, of some algorithms used to compute them, and of the

computations that were carried out at level 731.

Host: