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Abstract. Euler’s classic partition identity states that the number of partitions of n into
odd parts equals the number of partitions of n into distinct parts. We develop a new
generalization of this identity, which yields a previous generalization of Franklin as a special
case, and prove an accompanying Beck-type companion identity.

Strikingly, in 2016, Straub proved that Euler’s identity holds true for partitions with
largest hook (perimeter) n. This inspired further study of the relationship between classical
partitions and fixed perimeter partitions. Motivated by recent findings in this area, we
develop fixed perimeter analogues of several standard partition results as well as a Beck-type
companion identity in the fixed perimeter setting. We further use combinatorial methods
to prove analogues of various results related to parity in the fixed perimeter setting.

1. Introduction and Statement of Results

A partition of a positive integer n is a finite non-increasing sequence of positive integers
π = (π1, π2, . . . , πm) such that

∑m
i=1 πi = n. The πi are referred to as parts. The partition

function p(n) counts the number of partitions of n, and p(n | ∗) counts the number of
partitions of n satisfying some condition ∗.

One way to visualize a partition is with a Ferrers diagram, where each part πi is represented
by a row of πi dots. The rows are left-justified and arranged in non-increasing order with
the largest part in the first row. For example, the following diagram represents the partition
(5, 4, 2, 2).

• • • • •
• • • •
• •
• •

A fundamental partition theorem of Euler states that for any positive integer n, the number
of partitions of n into odd parts is equal to the number of partitions of n into distinct parts.
Employing standard notation, we have

(1) p(n | odd parts) = p(n | distinct parts).
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If we think of odd parts as parts not divisible by 2 and distinct parts as parts that appear
less than 2 times, then Glaisher’s theorem [18] generalizes Euler’s theorem by stating that
for all nonnegative integers n and all k ≥ 2,

(2) p(n | no part divisible by k) = p(n | no part appears ≥ k times).

In 1883, Franklin [15] provided a further generalization of Euler’s theorem (1). Define the
functions Oj,k(n) to count the number of partitions of n with exactly j parts divisible by
k (repetitions allowed) and Dj,k(n) to count the number of partitions of n with exactly j
parts that appear at least k times. Then, Franklin’s Theorem states that for all nonnegative
integers n, j, and all k ≥ 2,

(3) Oj,k(n) = Dj,k(n).

Note that setting j = 0 in (3) gives (2) and setting j = 0, k = 2 gives (1).
We also have the following theorem [19] of Hovey et al., which can also be thought of as

a generalization of Euler and Glaisher. For all nonnegative integers n, k ≥ 2, and b ≥ 1,
Hovey et al. gives that

(4) p(n | no part is divisible by kb)

= p(n | no part is both divisible by b and appears ≥ k times).

In order to write (1), (2), (3), and (4) in a more uniform notation, we introduce another
parameter b to the Oj,k(n) andDj,k(n) functions. Let Oj,k,b(n) count the number of partitions
of n with exactly j parts divisible by kb (repetitions allowed) and Dj,k,b(n) count the number
of partitions of n with exactly j parts are both divisible by b and appear ≥ k times. We also
let Oj,k,b(n) and Dj,k,b(n) denote the set of all partitions counted by Oj,k,b(n) and Dj,k,b(n),
respectively, so that

Oj,k,b(n) = |Oj,k,b(n)| and Dj,k,b(n) = |Dj,k,b(n)|.

We now state our first result.

Theorem 1.1. For all non-negative integers n, j ⩾ 0, k ⩾ 2, and b ⩾ 1,

Oj,k,b(n) = Dj,k,b(n).

In 2017, George Beck posted a conjecture about some sequences, say a(n), b(n), and c(n),
on OEIS in [25]. Let a(n) count the number of partitions of n such that the set of even
parts has only one element, b(n) count the difference between the total number of parts in
all odd partitions of n and the total number of parts in all distinct partitions of n, and c(n)
count the number of partitions of n in which exactly one part is repeated. Later that year,
Andrews [5, Thm. 1] proved Beck’s conjecture, showing that a(n) = b(n) = c(n) for all
n ≥ 1. Such identities are now called Beck-type companion identities.

Also in 2017, Fu and Tang [16, Thm. 1.5] generalized the above result of Andrews as
follows. For all n ≥ 0 and k ≥ 2, we have that

O1,k(n) =
∑

π∈O0,k(n)

ℓ1(π)−
∑

π∈D0,k(n)

ℓ̄(π) = D1,k(n),
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where ℓ1(π) is the number of parts ≡ 1(mod k) in the partition π and ℓ̄(π) is the number of
different parts in the partition π.

Definition 1.2. For all nonnegative integers n, j, and all integers k ≥ 2, b ≥ 1, define

E(Oj,k,b(n), Dj,k,b(n)) =
∑

π∈Oj,k,b(n)

ℓ(π)−
∑

π∈Dj,k,b(n)

ℓ(π),

where ℓ(π) is the total number of parts in the partition π.

Ballantine and Welch [8, Thm. 3] also discovered Beck-type companion identities for
Franklin’s Theorem. They find that for all nonnegative integers n, j, and all k ≥ 2,

(5)
1

k − 1
E(Oj,k(n), Dj,k(n)) = (j + 1)Oj+1,k(n)− jOj,k(n) = (j + 1)Dj+1,k(n)− jDj,k(n).

We state our next result, which is a Beck-type companion identity for Theorem 1.1 that
generalizes (5).

Theorem 1.3. For all n ∈ N, k ≥ 2, and j, b ≥ 1,

1

k − 1
E(Oj,k,b(n), Dj,k,b(n)) = (j+1)Oj+1,k,b(n)− jOj,k,b(n) = (j+1)Dj+1,k,b(n)− jDj,k,b(n).

We may also count partitions with a fixed perimeter rather than a fixed size. For a
partition π = (π1, π2, . . . , πm), let α(π) := π1 be the largest part, which we also call the
arm length, and let λ(π) := m be the number of parts, which we also call the leg length.
(Note that λ(π) = ℓ(π) as leg length and number of parts are equivalent, however, different
scenarios dictate the use of one over the other.) Define the perimeter of a partition π to be

Γ(π) = α(π) + λ(π)− 1.

Similarly to p(n), we define r(n) to count the number of partitions of perimeter n. For
example, below are two partitions with perimeter 5.

• • • • • • •
• • • • • •

• • •

In 2016, Straub [26, Thm. 1.4] discovered an analogue to Euler’s identity for partitions
with perimeter n. Let Fn denote the nth Fibonacci number. For all nonnegative integers n,
Straub proved that

(6) r(n | odd parts) = r(n | distinct parts) = Fn.

This result has motivated further investigation into whether other results for partitions of
size n hold true for partitions of fixed perimeter n.

In 2018, Fu and Tang [17, Thm. 2.15] generalized (6), which was then refined in 2024 by
Chen et al. [12, Thm. 1.4] as follows. Define the functions

h
(a)
d (n) := r(n | parts are d-distinct and ≥ a),

f
(a)
d (n) := r(n | parts are ≡ a(mod d+ 1)).

(7)
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Then for positive integers d, n, 1 ≤ a ≤ d+ 1, Chen et al. proved that

(8) h
(a)
d (n) = f

(a)
d (n).

If we define

FOj,k(n) := r(n | exactly j parts are divisible by k),

FDj,k(n) := r(n | exactly j parts appear ≥ k times),

then we have the following fixed perimeter result.

Theorem 1.4. For all non-negative integers n, j ≥ 0,

FOj,2(n) = FDj,2(n).

Note that for j = 0, this is precisely (6), and for j = 1, we obtain a result of Amdeberhan
et al. [1, Thm. 1.1].

We are also interested in Andrews’s S-T Theorem [2, Thm. 3], which states that for sets
S = {a0, a1, a2, . . .} and T = {1 = b0, b1, b2, . . .}, with bi ≤ ai, ai+1 > ai, and bi+1 > bi for
i ∈ N0, we have

(9) p(n | parts in T ) ≥ p(n | parts in S).

For partitions with fixed perimeter n, we find that (9) holds true and we are no longer
required to choose b0 = 1. Our next result is a fixed-perimeter analogue to (9).

Theorem 1.5. Let S = {a0, a1, a2, . . .}, T = {b0, b1, b2, . . .} where bi ≤ ai, ai+1 > ai, and
bi+1 > bi for i ∈ N0. Then

rT (n) = r(n | parts in T ) ≥ r(n | parts in S) = rS(n).

We now introduce the concept of parity bias in partitions.

Definition 1.6. Let po(n) be the number of partitions of n with more odd parts than even
parts and pe(n) be the number of partitions of n with more even parts than odd parts.

In 2020, Kim, Kim, and Lovejoy [23, Thm. 1] prove that for all n ̸= 2,

pe(n) < po(n).(10)

Letting ro(n) (resp. re(n)) denote the number of perimeter n partitions with more odd parts
than even parts (resp. more even parts than odd parts), we prove an analogous inequality
to (10) for partitions with fixed perimeter (noting equality holds when n = 2).

Theorem 1.7. For n ̸= 2,

re(n) < ro(n).

In addition, we find that the structure of fixed perimeter partitions easily motivates com-
binatorial arguments for parity bias inequalities, and we are able to develop combinatorial
proofs for the fixed perimeter analogues of many other parity bias results. We find that the
same combinatorial arguments can be used to justify analogous inequalities for perimeter
n partitions in which all odd parts or all even parts are required to be distinct. These are
described in Section 5.
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We now outline the remainder of this paper. In Section 3, we provide two proofs of
Theorem 1.1, one via generating functions and the other via a combinatorial bijection. We
also provide two proofs of the Beck-type companion identity in Theorem 1.3, one using
differentiation of generating functions and one incorporating the refinement approach of
Ballantine and Welch in [8, Thm. 4]. In Section 4, we prove Theorem 1.4, Theorem 1.5, as
well as other fixed perimeter analogues including a Beck-type companion identity. In Section
5, we prove Theorem 1.7 as well as a number of generalizations related to parity in the fixed
perimeter setting and recursive formulas for the number of perimeter n partitions requiring
even parts to be distinct or odd parts to be distinct.

2. Some Partition Results

In this section, we state several results that we consider in the fixed perimeter setting. In
2018, Fu and Tang [17, Thm. 2.15] generalized (6) as follows. First, recall the definitions of

h
(a)
d (n) and f

(a)
d (n) given by (7). For all nonnegative integers n and d, Fu and Tang proved

that

(11) h
(1)
d (n) = f

(1)
d (n).

In 2024, Chen et al. [12] generalized (11) as described in (8). We define another function

ℓ
(a)
d (n) in order to discuss more results of Chen et al. Let

ℓ
(a)
d (n) := r(n | parts are ≡ ±a(mod d+ 3)).

For positive integers d, n, and a < d+3
2
, Chen et al. [12, Thm. 1.5] proved that

(12) h
(a)
d (n) ≤ ℓ

(a)
d (n).

There are also shift inequalities for h
(a)
d (n) and ℓ

(a)
d (n) given by Chen et al. in [12, Prop.

1.6]. For positive integers d, n, and a,

h
(a+1)
d (n) ≤ h

(a)
d (n),(13)

h
(a)
d+1(n) ≤ h

(a)
d (n),(14)

ℓ
(a)
d+1(n) ≤ ℓ

(a)
d (n).(15)

In 2020, Duncan et al. [14, Lemma 2.2] give a generalization of (9), further extending on
an earlier generalization proved by Kang and Park in [21, Lemma 2.3].

Lemma 2.1 (Duncan et al. [14], 2020). Let S = {a0, a1, a2, . . .}, T = {m, b1, b2, . . .} such
that m divides each bi and bi ≤ ai, ai+1 > ai, bi+1 > bi for i ∈ N. Then

p(n | parts in T ) ≥ p(n | parts in S).

We note that our fixed perimeter analogue Theorem 1.5 also covers the analogue of this
theorem.

There is also a fixed perimeter Beck-type identity from Amdeberhan et al. [1, Cor. 1.8]
which states that for all non-negative integers n,

E(FO0,2(n), FD0,2(n)) = the number of partitions in FO1,2(n) with no part equal to 1.
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We now define

q
(a)
d (n) := p(n | parts are d-distinct and ≥ a),

Q(m1,m2)
m (n) := p(n | parts ≡ m1,m2 (mod m)).

Kang and Kim [20, Thm. 1.1] give the following theorem.

Theorem 2.2 (Kang, Kim [20], 2021). For integers 0 ⩽ m1 < m2 < m and a, d ⩾ 1, let
αd ∈ (0, 1) be a root of xd + x− 1 and define

Ad :=
d

2
log2 αd +

∑
r⩾1

αrd
d

r2
.

Then,

lim
n→∞

(
q
(a)
d (n)−Q(m1,m2)

m (n)
)
= +∞ if m >

⌊
π2

3Ad

⌋
,

lim
n→∞

(
q
(a)
d (n)−Q(m1,m2)

m (n)
)
= −∞ if m ⩽

⌊
π2

3Ad

⌋
.

This result considers the relationship between d-distinctness and equivalence modulo m
when we allow d and m to vary independently of each other. In Section 4.4, we shall explore
this in the fixed perimeter setting.

For S a subset of the positive integers, let pS(n) denote the number of partitions of n
with no parts coming from S, S0 denote the empty set, and Sk denote the set of integers
{1, 2, . . . , k}. Banerjee et al. [11, Theorems 1.5-1.7] extend the parity bias result (10) of
Kim, Kim, and Lovejoy in the following.

Theorem 2.3 (Banerjee et al. [11], 2022). For all n > 7, n > 0, and n > 8, respectively,

p{1}o (n) < p{1}e (n),(16)

p{2}o (n) > p{2}e (n),(17)

p{S2}
o (n) > p{S2}

e (n).(18)

We may also consider parity bias with a fixed degree of bias between even and odd parts.
Let

p(m,n) :− the number of partitions of n with exactly m more odd parts than even parts.

In 2023, Kim and Kim [22, Thm. 1] show that for all n /∈ {2, 4, 5, 7, 9, 11, 13},
(19) p(1, n) > p(−1, n).

Let do(n) (resp. de(n)) denote the number of partitions of n into distinct parts with more
odd parts than even parts (resp. more even parts than odd parts). Originally conjectured
by Kim, Kim and Lovejoy in [23], Banerjee et al. [11, Thm 1.4] prove the following parity
bias result in the distinct setting.

Theorem 2.4 (Banerjee et al. [11], 2022). For all n > 19,

do(n) > de(n).
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It is natural to try to extend parity bias results to a more general choice of modulus and
residue classes. Let 1 ≤ a < b ≤ m and denote by pa,b,m(n) (resp. pb,a,m(n)) the number of
partitions of n with more parts congruent to a (mod m) than parts congruent to b (mod m)
(resp. more parts congruent to b (mod m) than parts congruent to a (mod m)). In 2022,
Chern [13, Thm. 1.3] proved such a generalized bias result exists as follows.

Theorem 2.5 (Chern [13], 2022). For all n ≥ 1 and 1 ≤ a < b ≤ m,

pa,b,m(n) ≥ pb,a,m(n).

3. A Generalization of Franklin and Hovey: Oj,k,b(n) = Dj,k,b(n)

3.1. Proofs of Theorem 1.1. In this section, we provide two proofs of Theorem 1.1, one
via generating functions and the other via a combinatorial bijection.

Generating function proof of Theorem 1.1. We first define

Ok,b(z, q) :=
∞∑
n=0

∞∑
j=0

Oj,k,b(n)z
jqn

and

Dk,b(z, q) :=
∞∑
n=0

∞∑
j=0

Dj,k,b(n)z
jqn.

We have

Ok,b(z, q) =
∞∏
n=1

(
1 + zqkbn + zq2(kbn) + zq3(kbn) + · · ·

)
·

∞∏
n=1

n̸≡0 (kb)

1

1− qn

=
∞∏
n=1

(
1 +

zqkbn

1− qkbn

) ∞∏
n=1

1− qkbn

1− qn
,(20)

and

Dk,b(z, q)

=
∞∏
n=1

(
1 + qbn + q2(bn) + · · ·+ q(k−1)(bn) + zqk(bn) + zq(k+1)(bn) + · · ·

)
·

∞∏
n=1

n̸≡0 (b)

1

1− qn

=
∞∏
n=1

(
1 + qbn + q2(bn) + · · ·+ q(k−1)(bn)

) (
1 + zqk(bn) + zq2k(bn) + · · ·

) ∞∏
n=1

1− qbn

1− qn

=
∞∏
n=1

1− qk(bn)

1− qbn

∞∏
n=1

(
1 +

zqk(bn)

1− qk(bn)

) ∞∏
n=1

1− qbn

1− qn

=
∞∏
n=1

1− qkbn

1− qn

∞∏
n=1

(
1 +

zqkbn

1− qkbn

)
.(21)
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From (20) and (21), it is clear that Oj,k,b(n) = Dj,k,b(n) as their generating functions are
equal. □

Remark 3.1. It is often beneficial to write Ok,b(z, q) and Dk,b(z, q) in the less simplified
forms of (20) and (21). However, we may also write these generating functions succinctly
using q-pochhammer notation as follows.

Ok,b(z, q) =
((1− z)qkb; qkb)∞

(q; q)∞
= Dk,b(z, q),

where

(a; q)∞ =
∞∏
n=0

(1− aqn).

We now provide a fully combinatorial proof of Theorem 1.1.

Bijective proof of Theorem 1.1. We define a family of bijections {φk,b}∞bk=2 on P , the set of
all partitions. For bk ≥ 2, consider a partition π = (π1, π2, . . . , πr) counted by Oj,k,b(n).

• Denote by π the partition composed of all parts ≡ 0(mod bk) in π. For each πi ∈ π,
map πi to k copies of parts of size πi

k
. Denote by η the partition composed of all

parts converted in this way. Note that all parts in η appear at least k times and in
fact appear a multiple of k times.

• Denote by π̃ the partition composed of all parts appearing at least k time in π that
are ≡ 0(mod b) but ̸≡ 0(mod bk). For each πi ∈ π̃, combine (add) k copies of the
part πi to create a new part of size kπi. Repeat this process until no part appears
more than k− 1 times. Denote by η̃ the partition composed of all parts converted in
this way. Note that all parts in η̃ are divisible by bk and appear less than k times.

• Denote by π̂ the partition composed of all remaining parts in π. These parts are
either not divisible by b or are divisible by b but appear less than k times. Map each
part πi ∈ π̂ to itself. Denote by η̂ the partition composed of these parts.

Finally, let φk,b(π) := η = η ∪ η̃ ∪ η̂, where the union η ∪ η̃ ∪ η̂ consists of all parts in η, η̃,
and η̂ arranged in nonincreasing order. Via this map φk,b, the number of parts divisible by
bk in π is equal to the number of parts divisible by b that appear at least k times in η.
The inverse map acts on a partition η = (η1, η2, . . . , ηr) as follows. Each distinct part ηd
occurs md = tdk + ld times, where ld < k and at most one of td, ld are zero.

• Denote by η the partition composed of all tdk parts of those ηd for which td > 0.
For each part ηi ∈ η, combine k copies of the part ηi to create a new part of size
kηi. Repeat this process until no part appears more than k − 1 times. The resulting
partition is given exactly by π.

• Denote by η̃ the partition composed of all parts in η that are ≡ 0 (mod bk). For each
part ηi ∈ η̃, map ηi to k copies of equal parts ηi

k
. The resulting partition is given

exactly by π̃.
• Denote by η̂ the partition composed of all remaining parts ηi /∈ {η, η̃}. Map each
ηi ∈ η̂ to itself. The resulting partition is given exactly by π̂.

Observe that φ−1
k,b(η) = π ∪ π̃ ∪ π̂. Thus the function is indeed a bijection. □

We demonstrate below an example of the above bijection.
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Example 3.2. We list the all the partitions counted by O3,2,2(29) and D3,2,2(29), respec-
tively. Each row demonstrates the one-to-one correspondence via φ2,2.

O3,2,2(29) D3,2,2(29)
(16, 8, 4, 1) (8, 8, 4, 4, 2, 2, 1)
(12, 8, 5, 4) (6, 6, 5, 4, 4, 2, 2)
(12, 8, 4, 4, 1) (6, 6, 4, 4, 2, 2, 2, 2, 1)
(12, 8, 4, 3, 2) (6, 6, 4, 4, 3, 2, 2, 2)
(12, 8, 4, 3, 1, 1) (6, 6, 4, 4, 3, 2, 2, 1, 1)
(12, 8, 4, 2, 2, 1) (6, 6, 4, 4, 4, 2, 2, 1)
(12, 8, 4, 2, 1, 1, 1) (6, 6, 4, 4, 2, 2, 2, 1, 1, 1)
(12, 8, 4, 1, 1, 1, 1, 1) (6, 6, 4, 4, 2, 2, 1, 1, 1, 1, 1)

3.2. A Beck-Type Companion Identity for Theorem 1.1. In this section we prove
Theorem 1.3. Recall from the introduction that

E(Oj,k,b(n), Dj,k,b(n)) =
∑

π∈Oj,k,b(n)

ℓ(π)−
∑

π∈Dj,k,b(n)

ℓ(π),

where ℓ(π) is the number of parts in the partition π.

We will first prove Theorem 1.3 in a more direct manner by adapting the generating
functions for Oj,k,b(n) and Dj,k,b(n).

Proof of Theorem 1.3. Recall the generating functions for Oj,k,b(n) and Dj,k,b(n) given by
(20) and (21). We have

Ok,b(z, q) =
∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn
,

Dk,b(z, q) =
∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn
.

Now define

Ok,b(z, w, q) :=
∞∑
n=0

∞∑
j=0

∞∑
ℓ=0

Oj,k,b(n)z
jwℓqn

and

Dk,b(z, w, q) :=
∞∑
n=0

∞∑
j=0

∞∑
ℓ=0

Dj,k,b(n)z
jwℓqn.

We introduce the variable w to keep track of the total number of parts ℓ for each partition.
Note that in Ok,b(z, q), the 1 − qkbn term excludes terms divisible by kb, and in Dk,b(z, q),
the same term requires parts divisible by b to appear ≥ k times. (This is why the w is raised
to the power of k in Dk,b(z, w, q) and not Ok,b(z, w, q).) Adjusting the generating functions
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accordingly, we now have

(22) Ok,b(z, w, q) =
∞∏
n=1

(
1 +

zwqbkn

1− wqbkn

) ∞∏
n=1

1− wqbkn

1− wqn
=

∞∏
n=1

(
1− wqbkn + zwqbkn

1− wqn

)
and

(23) Dk,b(z, w, q) =
∞∏
n=1

(
1 +

zwkqbkn

1− wkqbkn

) ∞∏
n=1

1− wkqbkn

1− wqn
=

∞∏
n=1

(
1− wkqbkn + zwkqbkn

1− wqn

)
.

Now, to determine E(Oj,k,b(n), Dj,k,b(n)), we first take the partial derivatives of (22) and
(23) with respect to w and evaluate at w = 1. This will weight each partition by its number
of parts ℓ. After doing so, we take the difference to be left with the generating function for
E(Oj,k,b(n), Dj,k,b(n)). We have

∂

∂w

∣∣∣∣
w=1

Ok,b(z, w, q)

=
∞∑
n=1

(
(−qbkn + zqbkn)(1− wqn)− (1− wqbkn + zwqbkn)(−qn)

(1− wqn)2

)

·
∞∏

m=1
m ̸=n

(
1− wqkbm + zwqkbm

1− wqm

)∣∣∣∣∣∣∣
w=1

=
∞∑
n=1

(
qn − qbkn + zqbkn

(1− qn)(1− (1− z)qbkn)

) ∞∏
m=1

1− (1− z)qbkm

1− qm

=
∞∑
n=1

(
qn − (1− z)qbkn)

(1− qn)(1− (1− z)qbkn

)
Ok,b(z, q),

∂

∂w

∣∣∣∣
w=1

Dk,b(z, w, q)

=
∞∑
n=1

(
(−kwk−1qbkn + kzwk−1qbkn)(1− wqn)− (1− wkqbkn + zwkqbkn)(−qn)

(1− wqn)2

)

·
∞∏

m=1
m ̸=n

(
1− wkqkbm + zwkqkbm

1− wqm

)∣∣∣∣∣∣∣
w=1

=
∞∑
n=1

(
qn − k(qkbn − zqkbn) + (k − 1)(q(kb+1)n − zq(kb+1)n)

(1− qn)(1− (1− z)qbkn)

) ∞∏
m=1

1− (1− z)qbkm

1− qm

=
∞∑
n=1

(
qn − k(1− z)qbkn + (k − 1)(1− z)qbknqn

(1− qn)(1− (1− z)qbkn)

)
Ok,b(z, q).
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After subtracting, we have

∞∑
n=0

∞∑
j=0

E(Oj,k,b(n), Dj,k,b(n))z
jqn

=
∞∑
n=1

(
(k − 1)(1− z)qbkn − (k − 1)(1− z)qbknqn

(1− qn)(1− (1− z)qbkn)

)
Ok,b(z, q)

= (k − 1)(1− z)
∞∑
n=1

(
qbkn(1− qn)

(1− qn)(1− (1− z)qbkn)

) ∞∏
m=1

(
1− (1− z)qbkm

1− qm

)

= (k − 1)

(1− z)
∞∑
n=1

qbkn

1− qbkn

∞∏
m=1
m̸=n

(
1− (1− z)qbkm

1− qbkm

) ∞∏
m=1

1− qbkm

1− qm

(24)

= (k − 1)

[
(1− z)

∞∑
n=0

∞∑
j=0

(j + 1)Oj+1,k,b(n)z
jqn

]
(25)

= (k − 1)

[
∞∑
n=0

∞∑
j=0

((j + 1)Oj+1,k,b(n)− (j)Oj,k,b(n))z
jqn

]
.

The second to last equality (25) comes in the same manner as in Ballantine & Welch [8,

pf. of Thm. 4]. The qbkn

1−qbkn
in (24) corresponds to the part(s) of size bkn for a partition in

Oj+1,k,b(n). The following product corresponds to the other j parts which are divisible by
bk along with the weight zj. For a partition in Oj+1,k,b(n), there are j + 1 parts which can
be contributed by the first term, implying that π is counted j + 1 times in the coefficient of
zjqn. Thus,

1

k − 1
E(Oj,k,b(n), Dj,k,b(n)) = (j+1)Oj+1,k,b(n)− jOj,k,b(n) = (j+1)Dj+1,k,b(n)− jDj,k,b(n).

□

We now present perhaps a more illuminating approach to prove Theorem 1.3. We use the
following definitions to adapt the modular refinement used by Ballantine and Welch in [8].
Let k ≥ 2 and 0 ≤ t ≤ k − 1. Given a partition π, let

ℓt(π) = the number of parts ≡ bt(mod bk) in π.

Now, for a part i ∈ π that appears si times, we shall refer to si (mod k) as the residual
multiplicity of i in π, denoted by

(26) rπ(i).

Similarly, we refer to ⌊ si
k
⌋ as the nonresidual multiplicity of i in π, denoted

(27) r̃π(i).
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Note that si = kr̃π(i) + rπ(i). We let ℓ̄t(π) count the number of different parts ≡ 0 (mod b)
in π with rπ(i) ≥ t. Note that these are the same counting functions as in [8], however, we are
only considering the parts that are divisible by b. This is due to the nature of adapting Oj,k(n)
and Dj,k(n) to Oj,k,b(n) and Dj,k,b(n). We now define a refinement of E(Oj,k,b(n), Dj,k,b(n)).
For a given 1 ≤ t ≤ k − 1, let

Ej,k,b,t(n) :=
∑

π∈Oj,k,b(n)

(ℓt(π)− ℓ0(π))−
∑

π∈Dj,k,b(n)

ℓ̄t(π).

To help construct our second proof of Theorem 1.3, we introduce the following lemma.

Lemma 3.3. For integers n, j, k, b, t with n, j ≥ 0, k ≥ 2, b ≥ 1 and 1 ≤ t ≤ k− 1, we have

Ej,k,b,t(n) = (j + 1)Oj+1,k,b(n)− jOj,k,b(n)

= (j + 1)Dj+1,k,b(n)− jDj,k,b(n).

Proof. We fix k ≥ 2 and 1 ≤ t ≤ k − 1. We shall denote by Oj,k,b,t(m,n) the subset of
partitions in Oj,k,b(n) in which exactlym parts are equivalent to bt( mod bk). We also denote
by Dj,k,b,t(m,n) the subset of partitions in Dj,k,b(n) with m parts with residual multiplicity
i ≡ 0( mod b) that also satisfy rπ(i) ≥ t. Similarly letOj,k,b,0(m,n) be the subset of partitions
in Oj,k,b with m parts divisible by bk.

As has been standard thus far we allow

Oj,k,b,t(m,n) = |Oj,k,b,t(m,n)|

and

Dj,k,b,t(m,n) = |Dj,k,b,t(m,n)|.
We define the following trivariate generating functions

Ok,b,t(z, w, q) :=
∞∑
n=0

∞∑
j=0

∞∑
m=0

Oj,k,b,t(m,n)z
mwjqn,

Dk,b,t(z, w, q) :=
∞∑
n=0

∞∑
j=0

∞∑
m=0

Dj,k,b,t(m,n)z
mwjqn,

Ok,b,0(z, w, q) :=
∞∑
n=0

∞∑
j=0

∞∑
m=0

Oj,k,b,0(m,n)z
mwjqn.

As the variable w is being used to count the number of parts, it is evident by our definitions
that

∞∑
n=0

∞∑
j=0

Ej,k,b,t(n)z
jqn =

∂

∂w

∣∣∣∣
w=1

(Ok,b,t(z, w, q)− Ok,b,0(z, w, q)− Dk,b,t(z, w, q)).

We shall derive each generating function Ok,b,t(z, w, q), Ok,b,0(z, w, q), and Dk,b,t(z, w, q), take
each of their partial derivatives at w = 1, then subtract them to determine Ej,k,b,t(n).

In Ok,b,t(z, w, q) we include a w for terms that are equivalent to bt modulo bk. In
Dk,b,t(z, w, q) we include a w for terms divisible by b whose residual multiplicity is ≥ t.
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In Ok,b,0(z, w, q) we include a w for terms divisible by bk. We have,

Ok,b,t(z, w, q)

=
∞∏
n=1

(1 + zqbkn + zq2bkn + · · · )

·
∞∏
n=0

1

(1− qbkn+1) · · · (1− qbkn+bt−1)(1− wqbkn+bt)(1− qbkn+bt+1) · · · (1− qbkn+bk−1)

=
∞∏
n=1

(
1 +

zqkbn

1− qkbn

) ∞∏
n=1

1− qbkn

1− qn

∞∏
n=0

1− qbkn+bt

1− wqbkn+bt
,

Dk,b,t(z, w, q)

=
∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

n̸≡0 (b)

1

1− qn

·
∞∏
n=1

(1 + qbn + · · ·+ q(t−1)bn + wqtbn + wq(t+1)bn + · · ·+ wq(k−1)bn)

=
∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbn

1− qn

∞∏
n=1

1− qbtn + wqbtn − wqbkn

1− qbn
,

and

Ok,b,0(z, w, q) =
∞∏
n=1

(
1 +

wzqbkn

1− wqbkn

) ∞∏
n=1

n̸≡0 (kb)

1

1− qn
=

∞∏
n=1

(
1− (1− z)wqbkn

1− wqbkn

) ∞∏
n=1

1− qbkn

1− qn
.

Now, differentiation gives

∂

∂w

∣∣∣∣
w=1

Ok,b,t(z, w, q)

=
∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn

∞∑
m=0

qbkm+bt(1− qbkm+bt)

(1− qbkm+bt)2

∞∏
n=0
n ̸=m

1− qbkn+bt

1− qbkn+bt


=

∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn

∞∑
m=0

qbkm+bt

1− qbkm+bt

=
∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn

∞∑
m=1

qbtm

1− qbkm
,(28)

∂

∂w

∣∣∣∣
w=1

Dk,b,t(z, w, q)
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=
∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbn

1− qn

∞∑
m=1

qbtm − qbkm

1− qbm

∞∏
n=1
n ̸=m

1− qbtn + qbtn − qbkn

1− qbn


=

∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn

∞∑
m=1

qbtm − qbkm

1− qbkm
,(29)

∂

∂w

∣∣∣∣
w=1

Ok,b,0(z, w, q) =
∞∏
n=1

1− qbkn

1− qn

·
∞∑

m=1

−(1− z)qbkm(1− qbkm) + qbkm(1− (1− z)qbkm)

(1− qbkm)2

∞∏
n=1
n̸=m

1− (1− z)qbkn

1− qbkn


=

∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn

∞∑
m=1

qbkm − (1− z)qbkm

(1− qbkm)(1− (1− z)qbkm)
.(30)

Note that our equality in (28) comes as in Ballantine & Welch [8, pf. of Thm. 4] from the
fact that

∞∑
n=0

qbkn+bt

1− qbkn+bt
=

∞∑
n=0

∞∑
m=1

qm(bkn+bt) =
∞∑

m=1

qbtm
∞∑
n=0

qnbkm =
∞∑

m=1

qbtm

1− qbrm
.

We now subtract (29) and (30) from (28) to obtain

∞∑
n=0

∞∑
j=0

Ej,k,b,t(n)z
jqn =

∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn

·
∞∑

m=1

(
qbtm

1− qbkm
− qbtm − qbkm

1− qbkm
− qbkm − (1− z)qbkm

(1− qbkm)(1− (1− z)qbkm)

)
.(31)

The summand in (31) simplifies as

qbtm

1− qbkm
− qbtm − qbkm

1− qbkm
− qbkm − (1− z)qbkm

(1− qbkm)(1− (1− z)qbkm)
=

(1− z)qbkm

(1− (1− z)qbkm)
.

Thus,

∞∑
n=0

∞∑
j=0

Ej,k,b,t(n)z
jqn =

∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn

∞∑
m=0

(1− z)qbkm

(1− (1− z)qbkm)

=(1− z)
∞∑

m=1

 qbkm

1− qbkm

∞∏
n=1
n ̸=m

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qn


=(1− z)

∞∑
n=0

∞∑
j=0

(j + 1)Oj+1,k,b(n)z
jqn
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=
∞∑
n=0

∞∑
j=0

((j + 1)Oj+1,k,b(n)− jOj,k,b(n)) z
jqn.

Here, the second to last equality follows as in the previous proof of Theorem 1.3 as well as
in [8, pf of Thm. 4]. So we have our result,

Ej,k,b,t(n) = (j + 1)Oj+1,k,b(n)− jOj,k,b(n) = (j + 1)Dj+1,k,b(n)− jDj,k,b(n).

□

We now provide an analytic proof of Theorem 1.3 through the use of Lemma 3.3.

Proof of Theorem 1.3 through a modular refinement. For k ≥ 2, we will sum over 1 ≤ t ≤
k − 1 in Lemma 3.3. We have that

k−1∑
t=1

Ej,k,b,t(n) =(r − 1)((j + 1)Oj+1,k,b(n)− jOj,k,b(n))

=(r − 1)((j + 1)Dj+1,k,b(n)− jDj,k,b(n)).

It remains to be shown, however, that

E(Oj,k,b(n), Dj,k,b(n)) =
k−1∑
t=1

Ej,k,b,t(n).

We claim that we need only count the number of parts ≡ 0 (mod b) when considering
E(Oj,k,b(n), Dj,k,b(n)), as the number of parts ̸≡ 0 (mod b) in Oj,k,b(n) and Dj,k,b(n) are
equinumerous. To see this, consider the following generating function, in which we let w
count the number of parts ̸≡ 0 (mod b). For both Oj,k,b(n) and Dj,k,b(n), this takes the form

∞∏
n=1

(
1 +

zqbkn

1− qbkn

) ∞∏
n=1

1− qbkn

1− qbn

∞∏
n=1

1− wqbn

1− wqn
.

Thus, we shall only consider the parts divisible by b. We have that

k−1∑
t=1

Ej,k,b,t(n) =
k−1∑
t=1

 ∑
π∈Oj,k,b(n)

(ℓt(π)− ℓ0(π))−
∑

π∈Dj,k,b(n)

ℓ̄t(π)


=

∑
π∈Oj,k,b(n)

ℓb(π)− k
∑

π∈Oj,k,b(n)

ℓ0(π)−
k−1∑
t=1

∑
π∈Dj,k,b(n)

ℓ̄t(π),

where ℓb(π) is the number of parts ≡ 0 (mod b) in a partition π. For a given partition
π ∈ Dj,k,b(n), each unique part i ∈ π is counted in

k−1∑
t=1

∑
π∈Dj,k,b(n)

ℓ̄t(π)
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as many times as its residual multiplicity rπ(i), as defined in (26). Alternatively,

k−1∑
t=1

∑
π∈Dj,k,b(n)

ℓ̄t(π) =
∑

π∈Dj,k,b(n)

∑
i∈π
b|i

rπ(i).

If si is the multiplicity of a part i in the partition π, we have that si = kr̃π(i) + rπ(i), where
r̃π(i) is the nonresidual multiplicity (27) of i in π. It is evident that∑

π∈Dj,k,b(n)

ℓb(π) =
∑

π∈Dj,k,b(n)

∑
i∈π
b|i

(kr̃π(i) + rπ(i))

= k
∑

π∈Dj,k,b(n)

∑
i∈π
b|i

r̃π(i) +
∑

π∈Dj,k,b(n)

∑
i∈π
b|i

rπ(i).

It therefore suffices to show ∑
π∈Oj,k,b(n)

ℓ0(π) =
∑

π∈Dj,k,b(n)

∑
i∈π
b|i

r̃π(i).

We shall denote by Dk,b(m,n) the subset of partitions π ∈ Dk,b(n) in which the sum of r̃π(i)
over unique parts i ≡ 0 (mod b) in π is equal to m, where Dj,k,b(m,n) = |Dj,k,b(m,n)|. Let

Dk,b(z, w, q) :=
∞∑
n=0

∞∑
m=0

∞∑
j=0

Dj,k,b(m,n)z
jwmqn.

We then have

Dk,b(z, w, q) =
∞∏
n=1

(
1 +

wzqbkn

1− wqbkn

) ∞∏
n=1

1− qbkn

1− qn
= Ok,b,0(z, w, q).

It is now evident that∑
π∈Dj,k,b(n)

∑
i∈π
b|i

r̃π(i) =
∂

∂w

∣∣∣∣
w=1

Dk,b(z, w, q) =
∂

∂w

∣∣∣∣
w=1

Ok,b,0(z, w, q) =
∑

π∈Oj,k,b(n)

ℓ0(π).

Thus,

E(Oj,k,b(n), Dj,k,b(n)) =
k−1∑
t=1

Ej,k,b,t(n).

□
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4. Fixed Perimeter Analogues of Regular Partition Results

We now shift focus to the fixed perimeter partition setting. Recall, as outlined in the
introduction, the perimeter of a partition is given by the number of dots on the north and
west edges of its corresponding diagram. We often consider the perimeter by the arm length
α(π) plus the leg length λ(π) minus one, as the northwestern most dot is counted by both
α and λ.

Within this section, it is often useful to consider a partition by its profile rather than by
the constituting parts. Each partition is in bijection with a unique profile, which corresponds
to the set of southmost and eastmost edges. From this profile, we shall construct a word for
a given partition π, say wπ, that consists of {E,N}. Beginning at the southwest corner of
the partition, we trace along the profile. Each horizontal edge contributes an E to our word,
while each vertical edge contributes an N to our word. Note that each word corresponding
to a partition with perimeter n is of length n + 1 and must always begin with E and end
with N .

Within a word wπ, the number of Es is precisely the largest part of π (arm length) α(π).
Similarly, the number of Ns is precisely the number of parts of π (leg length) λ(π). This
gives further intuition into the length of our word for a given partition, as α + λ = n+ 1.

4.1. Analogue of a Special Case in Franklin’s Identity. We present two proofs of
Theorem 1.4–the first a bijective proof generalizing Fu and Tang’s bijection [17] and the
second a generating function proof.

Recall that we have defined

FOj,k(n) := r(n | exactly j parts are divisible by k),

FDj,k(n) := r(n | exactly j parts appear at least k times).

We also allow FOj,k(n) (resp. FDj,k(n)) to be the set of partitions counted by FOj,k(n)
(resp. FDj,k(n)).

Bijective Proof of Theorem 1.4. We shall first recall the bijection presented by Fu and Tang
[17], using the language of words referring to the profile of a partition. Given a partition
π ∈ FD0,2(n) we shall apply a function γ : FD0,2(n) → FO0,2(n) in which γ(π) is defined
by the following mapping

• Initial E 7→ E
• NE 7→ EE
• Any E which is preceded by an E 7→ N
• Final N 7→ N

The authors prove that γ(π) ∈ FO0,2(n), as any E after the initial move must occur in
a pair, ensuring that all parts are odd. Note that this is a bijection, with the inverse γ−1

defined as follows.

• Initial E 7→ E
• EE 7→ NE
• All N but final 7→ E
• Final N 7→ N
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It is evident that γ−1(γ(π)) = π, proving the bijection. We adapt this to obtain a bijection

ξ : FDj,2(n) → FOj,2(n)

allowing for j ≥ 0 non-distinct (resp. even) parts.
For π ∈ FDj,2(n), repeated parts are identifiable by a tuple of i ≥ 2 consecutive Ns.

Likewise, for π ∈ FDj,2(n), even parts are distinguished by an odd number of Es followed
by i ≥ 1 consecutive Ns, omitting the initial move E in our count. In adapting γ to create ξ,
we can extend the rule mapping NE to EE to include these possibilities. For π ∈ FDj,2(n),
ξ(π) is defined by the following mapping.

• First E 7→ E
• Any i+ 1-tuple of (i)N E 7→ an i+ 1-tuple E (i− 1)N E, for i ≥ 1
• Any E which is preceded by an E 7→ N

• Final t Ns 7→

{
N if t = 1

E (t− 1)N if t > 1

Here, a part that occurs multiple times is converted into an even part, allowing for repetitions.
We also consider the case when the largest part is repeated, converting it to an even part.
Note that we allow i = 1, containing the mapping of NE → EE. We define the inverse ξ−1

as follows.

• First E 7→ E
• Any i+1-tuple of E (i)N in which total preceding Es is odd 7→ an i+1-tuple (i+1)N ,
for i ≥ 0

• Final N 7→ N , if not considered in previous step
• Any remaining N 7→ E

It is evident that ξ−1(ξ(π)) = π, confirming the bijection between FDj,2(n) and FOj,2(n).
Thus,

FOj,2(n) = |FOj,2(n)| = |FDj,2(n)| = FDj,2(n).

□

We now present a generating function proof of the same equality.

Generating function proof of Theorem 1.4. We first define the bivariate generating functions

FOk(z, q) =
∞∑
n=0

∞∑
j=0

FOj,k(n)z
jqn,

FDk(z, q) =
∞∑
n=0

∞∑
j=0

FDj,k(n)z
jqn.

Further, we introduce refinements based on largest part (arm length) α and number of parts
(leg length) λ for a partition of perimeter n. We have

FOj,k(α, λ) = FOj,k(α, λ, n)

= r(n | j parts are ≡ 0(mod k) with largest part α and λ parts),

FDj,k(α, λ) = FDj,k(α, λ, n)
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= r(n | j parts occur ≥ k times with largest part α and λ parts),

with quadvariate generating functions

FOk(x, y, z, q) :=
∞∑
j=0

∞∑
λ=0

∞∑
α=0

FOj,k(α, λ)x
αyλzjqα+λ−1,

FDk(x, y, z, q) :=
∞∑
j=0

∞∑
λ=0

∞∑
α=0

FDj,k(α, λ)x
αyλzjqα+λ−1.

We fix k = 2 for this proof but note that the above generating function definitions allow
for generality. For k = 2 we will show that

FO2(x, y, z, q) =
xyq(1− yq + xzq)

1− 2yq − (x2 − y2)q2 + (1− z)x2yq3
,(32)

FD2(x, y, z, q) =
xyq(1− (1− z)yq)

1− (x+ y)q + (1− z)xy2q3
.(33)

Before we prove (32) and (33), we first note that taking x = y = 1 in (32), (33) gives

FO2(1, 1, z, q) = FO2(z, q) =
q(1− (1− z)q)

1− 2q + (1− z)q3
= FD2(z, q) = FD2(1, 1, z, q).(34)

Thus, for any j, n ∈ N it follows from (34) that

FOj,2(n) = FDj,2(n).

We now derive the generating functions in (32), (33), beginning with FO2(x, y, z, q). We
shall borrow a technique from Fu and Tang [17] when constructing fixed perimeter generating
functions. In our generating function, the x, which is counting the largest part α, corresponds
to any E in our word. Similarly the y, which is counting the number of parts λ, corresponds
to any N in our word. We shall also allow z to track moves counted by j, as is done in
the regular partition setting. In constructing our generating function, we shall consider a
traversal of the profile of a partition counted by FOj,k(n), permitting valid choices of E, N .

Partitions in FOj,2(n) (partitions with perimeter n containing j parts even) begin with a
single move E followed by i ≥ 0 moves N , which we will call the first block of the generating
function. We include the final move N ending the profile of our partition in this block as
well, as this move is likewise always present. Then this first block is generated by

xyq(1 + yq + (yq)2 + · · · ) = xyq

1− yq
.

We continue tracing the profile by single moves E followed by i ≥ 0 copies of N . While
tracing the profile, if the current total number of E’s is even and is followed by any number of
Ns, we shall increment the power of z by 1. Having an even number of total E’s corresponds
to including a part of even size for every move N . Thus, if we include any of these parts, we
must increase the power of z, as we have included an even sized part.

So, including our step E prior, the block generating an even part takes the following form.

xq(1 + zyq + z(yq)2 + · · · ) = xq

(
1 +

zyq

1− yq

)
.
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If the current total number of E’s is odd, we allow it to move N unrestricted. This is
generated by the term

xq(1 + yq + (yq)2 + · · · ) = xq

1− yq
.

We must also account for the possibility of having an even largest part. It is clear that the
largest part must occur at least once, so the power of z must be incremented by 1. We thus
require in our generating function that a largest even part is generated by the term

xq
z

1− yq
.

Now, we must put together these blocks of the generating function which we have derived.
Let ω represent the initial block, a represent the generating function for an odd part, and b
represent the generating function for an even part. The initial block includes an odd part,
so following that, we must then alternate between even and odd parts, as we take moves E.
Using our representatives, this will take the format

ω(1 + b+ ab+ ab2 + a2b2 + a2b3 + · · · ).

We shall now let c represent ending on an even part. Going off of our format, this equates
to replacing a given b with c the first time it appears, as the most recently included part size
in the profile is the largest part. After this replacement we have

ω(1 + c+ ab+ abc+ a2b2 + a2b2c+ . . . ) = ω
1 + c

1− ab
= ω(1 + c)(1− ab)−1.

Substituting for our previously derived blocks, we have

FOj,2(x, y, z, q) =
xyq

1− yq

(
1 +

xqz

1− yq

)(
1− xq

1− yq
· xq(1− (1− z)yq)

1− yq

)−1

=
xyq(1− yq + xzq)

(1− yq)2 − x2q2(1− (1− z)yq)

=
xyq(1− yq + xzq)

1− 2yq − (x2 − y2)q2 + (1− z)x2yq3
.

We shall now derive our generating function for FD2(x, y, z, q) using the same method to
trace profiles for partitions in FDj,2(n). We shall begin, as in the previous derivation, with
a single move E followed by i ≥ 0 moves N . If there are ≥ 2 steps N we must increment the
power of z by 1, as this equates to repeating a part. This first block will be generated by

xq(1 + yq + z(yq)2 + z(yq)3 + · · · ) = xq(1− (1− z)y2q2)

1− yq
.(35)

Unlike our previous generating function, we do not include a single step N for the com-
pletion of the partition. This is because we must be able to precisely determine the number
of repetitions for all parts of our partition, including, of course, the largest part, and by
simply taking a move N , this may cause an uncounted repetition. Before considering this,
we will fill out the body of our partition, the movements between the first block and final
block. Tracing through the profile, after any step E, we allow for i ≥ 0 moves N , while
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incrementing the power of z if i ≥ 2. The block generating this step is exactly the same as
our first block, taking the form

xq(1− (1− z)y2q2)

1− yq
.

We shall allow for i of these blocks in our generating function, for i ≥ 0. So, the block
generating the body of our partition will take the form

(36) 1 +
xq(1− (1− z)y2q2)

1− yq
+

(
xq(1− (1− z)y2q2)

1− yq

)2

+ · · ·

=

(
1− xq(1− (1− z)y2q2)

1− yq

)−1

.

To ensure our final power of z is accurate, we will allow for the final block to include all
repetitions of the largest part. To ensure that these have not been counted elsewhere, we
first take a step E and require at least one step N , as our largest part must be present at
least once. This is generated by

xyq(1 + z(yq) + z(yq)2 + · · · ) = xyq(1− (1− z)yq)

1− yq
.(37)

We emit a q from this block to fix n = α + λ − 1. We now put these blocks together; the
initial block given by (35), the body block given by (36), and the final block given by (37).
We have(

xq(1− (1− z)y2q2)

1− yq

)
·
(
1− xq(1− (1− z)y2q2)

1− yq

)−1

·
(
xyq(1− (1− z)yq)

1− yq

)
.

Note, however, that this generating function does not allow for partitions in which all parts
are equal to 1, as the initial and final blocks require 2 steps E total. To remedy this, we
allow for the final block to occur on its own, ensuring that z is still accurately incremented
if the largest part is repeated. We have our final generating function.

FD2(x, y, z, q) =
xyq(1− (1− z)yq)

1− yq

·

(
1 +

(
xq(1− (1− z)y2q2)

1− yq

)(
1− xq(1− (1− z)y2q2)

1− yq

)−1
)

=
xyq(1− (1− z)yq)

1− yq

(
1− xq(1− (1− z)y2q2)

1− yq

)−1

=
xyq(1− (1− z)yq)

1− yq − xq(1− (1− z)y2q2

=
xyq(1− (1− z)yq)

1− (x+ y)q + (1− z)xy2q3
.

□
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We note that the same technique can be used to derive generating functions for FOj,k(n)
and FDj,k(n) for k ≥ 2. However, for k ≥ 2, the equality of FOj,k(n) and FDj,k(n) no
longer holds, and the generating functions become increasingly complicated and uninviting
to work with. Computational evidence leads us to make the following conjecture.

Conjecture 4.1. For integers j ≥ 0, k ≥ 2, there is some N such that for all n ≥ N we
have

FDj,k(n) ≥ FOj,k(n).

We use non-strict inequality to account for k = 2 but note that for k > 2 the inequality
seems to become strict for n sufficiently large.

4.2. Fibonacci Recurrence Relations. Motivated by Straub’s result (6) in [26], we prove
via induction over n the following extensions, which give us as a corollary a Straub-type
equality in Theorem 4.4.

Lemma 4.2. For s a positive integer and n > s+ 1,

rd(s)(n) := r(n | parts are distinct and smallest part = s) = Fn−s−1.

Proof. Let s be fixed. The only partition counted by rd(s)(s + 2) is (s + 1, s), and the only
partition counted by rd(s)(s+ 3) is (s+ 2, s), so the claim holds for n = {s+ 2, s+ 3}. Now
suppose that rd(s)(n) = Fn−s−1 holds for all valid choices of n up to n = s+ k with k ≥ 3.

We observe that, in general, the set of partitions counted by rd(s)(s + r + 1) may be
generated from the set of partitions counted by rd(s)(s+ r) as follows.

Case A. The partitions π′ counted by rd(s)(s + r + 1) that do not contain a part equal to
s+1 are in bijection with the set of partitions π counted by rd(s)(s+ r) and may be
generated by adding one to each part in π except for the part equal to s to obtain
the unique corresponding π′.

Case B. The partitions π′′ counted by rd(s)(s+ r+1) that do contain a part equal to s+1 are
in bijection with the set of partitions π′ counted by rd(s)(s + r) that do not contain
a part equal to s+1 and may be generated by adding a part equal to s+1 to obtain
the unique corresponding π′′. By Case A, we know these partitions π′ may in turn
be generated by the set of partitions π counted by rd(s)(s+ r − 1).

Now, consider the partitions counted by rd(s)(s+ k+1). We observe that these partitions
may be constructed from the partitions counted by rd(s)(s+k) and rd(s)(s+k−1) as follows.

• The set of partitions π′ counted by rd(s)(s+ k + 1) that do not contain a part equal
to s+ 1 are in bijection with the set of partitions π counted by rd(s)(s+ k) by Case
A above. By hypothesis, these are counted by Fk−1.

• The set of partitions π′′ counted by rd(s)(s + k + 1) that do contain a part equal to
s+1 are in bijection with the set of partitions π′ counted by rd(s)(s+ k) that do not
contain a part equal to s + 1 by Case B above, which are in turn in bijection with
the set of partitions π counted by rd(s)(s + k − 1) by Case A. By hypothesis, these
are counted by Fk−2.
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The above cases account for all partitions counted by rd(s)(s + k + 1) as it is clear each
must either have a part of size s+1 or not have such a part. Then the number of partitions
counted by rd(s)(s+k+1) is given by Fk−1+Fk−2 = Fk, and the claim holds for n = s+k+1.
By the principle of induction, the desired result follows. □

We apply similar reasoning to perimeter n partitions with odd parts.

Lemma 4.3. For s ≥ 0 and n > 2s+ 1,

ro(s)(n) := r(n | parts are odd and smallest part = 2s+ 1) = Fn−2s−1.

Proof. Let s be fixed. It is evident that the only partition counted by ro(s)(2s + 2) is
(2s+1, 2s+1) and that the only partition counted by ro(s)(2s+3) is (2s+1, 2s+1), 2s+1,
so the claim holds for n = {2s + 2, 2s + 3}. Now suppose that ro(s)(n) = Fn−2s−1 holds for
all valid choices of n up to 2s+ k with k ≥ 3.

We observe that the set of partitions counted by ro(s)(2s+ k + 1) may be generated from
the set of partitions counted by ro(s)(2s+ k) and ro(s)(2s+ k − 1) as follows.

• The partitions π counted by ro(s)(2s+ k+1) that at least 2 parts equal to 2s+1 are
in bijection with the partitions π′ counted by ro(s)(2s+ k) and may be generated by
adding a new smallest part of 2s + 1 to each π′ to obtain the unique corresponding
π. By hypothesis, these are counted by Fk−1.

• The partitions π counted by ro(s)(2s+ k + 1) that contain exactly one part equal to
2s+1 are in bijection with the partitions π′′ counted by ro(s)(2s+k− 1) and may be
generated by adding 2 to each part in π′ except for the part of size 2s+ 1 to obtain
the unique corresponding π. By hypothesis, these are counted by Fk−2.

Observe that the above cases account for all partitions counted by rd(s)(2s + k + 1) as it is
clear each must either have at least 2 parts of size 2s + 1 or exactly one such part. Then
the number of partitions counted by rd(s)(2s+ k+ 1) is given by Fk−1 +Fk−2 = Fk, and the
claim holds for n = 2s+ k + 1. By the principle of induction, the desired result follows. □

Lemmas 4.2 and 4.3 immediately yield the following theorem.

Theorem 4.4. For s a positive integer and n > s+ 1,

ro(s)(n+ s) = rd(s)(n).

Remark 4.5. Lemmas 4.2 and 4.3, and hence Theorem 4.4, can alternatively be proven
using generating functions. We have that

∞∑
n=s+2

rd(s)(n)qn = qs+1

∞∑
n=1

h1(n)q
n = qs+1

∞∑
n=1

Fnq
n =

∞∑
n=s+2

Fn−s−1q
n,

and
∞∑

n=2s+2

ro(s)(n)qn = q2s+1

∞∑
n=1

f1(n)q
n = q2s+1

∞∑
n=1

Fnq
n =

∞∑
n=2s+2

Fn−2s−1q
n,

where h1(n) (resp. f1(n)) counts perimeter n partitions into distinct parts (resp. odd parts).
Thus for n > s+ 1, rd(s)(n) = Fn−s−1 and for n > 2s+ 1, ro(s)(n) = Fn−2s−1.
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4.3. Analogue of Andrews’s S-T Theorem. An important theorem in the regular par-
tition setting is Andrew’s S-T result (9), due to its generality and applicability to many
partition counting functions. In this section, we shall prove an analogue of this in the fixed
perimeter setting through a counting proof and an injective proof. Recall that we have
defined

S = {a0, a1, a2, . . . }, where ai+1 > ai,

T = {b0, b1, b2, . . . }, where bi+1 > bi,

with the added requirement that ai ≥ bi for all i ∈ N0. We prove that

rT (n) = r(n | parts in T ) ≥ r(n | parts in S) = rS(n).

Proof of Theorem 1.5. We begin by defining, for any n ∈ N,
Sn = {ai ∈ S : ai ≤ n},
Tn = {bi ∈ T : bi ≤ n}.

For a given n, rS(n) = rSn(n) and rT (n) = rTn(n), as clearly no part in a partition of
n can be larger than n. Since bi ≤ ai for all i, we have |Sn| ≤ |Tn| for all n ∈ N (i.e.
if Sn = {a0, a1, . . . ak} then {b0, b1, . . . , bk} ⊆ Tn). We can count rS(n) (resp. rT (n)) by
summing over the possible largest parts coming from Sn (resp. Tn):

rS(n) =
∑

π∈RS(n)

rS(α, λ) =

|Sn|−1∑
i=0

rS(ai, n− ai + 1),

rT (n) =
∑

π∈RT (n)

rT (α, λ) =

|Tn|−1∑
i=0

rT (bi, n− bi + 1).

We consider these on a term-by-term basis for a given 0 ≤ i ≤ |Sn| − 1. We use a stars
and bars counting technique, similar to the method used in [12, Lemma 4.3], to determine
rS(α, λ). For a given α, we determine the number of possible ways to choose the remaining
λ − 1 parts (where here α = ai and λ = n − ai + 1). Since our largest part is ai, we know
the remaining parts can be chosen from the set Sai . We have that

rS(ai, λ) =

(
|Sai |+ λ− 2

λ− 1

)
.

Since |Sai | = i+ 1 and λ = n− ai + 1, we have

rS(ai, n− ai + 1) =

(
n− ai + i

n− ai

)
,

and, similarly, for the same bounds on i, 0 ≤ i ≤ |Sn| − 1 (≤ |Tn| − 1),

rT (bi, n− bi + 1) =

(
n− bi + i

n− bi

)
.

Now, since we know that ai ≥ bi, we can let δi = ai − bi ≥ 0. By substituting, we have that(
n− bi + i

n− bi

)
=

(
n− ai + i+ δi
n− ai + δi

)
≥
(
n− ai + i

n− ai

)
,
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with the inequality coming from the fact that
(
n+a
k+a

)
≥
(
n
k

)
. As this is true for 0 ≤ i ≤ |Sn|−1

and |Sn| ≤ |Tn|, we have that

rS(n) =

|Sn|−1∑
i=0

rS(ai, n− ai + 1) ≤
|Tn|−1∑
i=0

rT (bi, n− bi + 1) = rT (n).

□

We now prove Theorem 1.5 through the use of an injection between the sets of partitions
counted by rT (n) and rS(n).

Injective Proof of Theorem 1.5. We begin by considering the sets of partitions with parts in
S and T respectively. We have RS(n) = {π : πi ∈ S}, RT (n) = {π : πi ∈ T}. Note that
|RS(n)| = rS(n) and |RT (n)| = rT (n). Our desired result is to show that |RS(n)| ≤ |RT (n)|.
Consider π ∈ RS(n) with π = (π1, . . . , πk). Note that each πi = aj for some j. We will

enumerate this as πi = aji . We then have that n = aj1 +k−1, as π1 is the largest part and k
tracks the number of parts. Also let δi = ai − bi ≥ 0, and specifically let x = δj1 . We define
a function f : RS(n) → RT (n) where f(π) = (f(π)1, . . . , f(π)k, . . . , f(π)k+x) and

f(π)i =

{
bji , if 1 ≤ i ≤ k,

b0, if k < i ≤ k + x.

Note that this preserves our perimeter n, as the x we are losing from the largest term is
being added back to the perimeter by appending x parts to the end of the partition, i.e.,

n = aj1 + k − 1 = (bj1 + x) + k − 1 = bj1 + (k + x)− 1.(38)

We will let B(n) represent the image of f , i.e., B(n) = f(RS(n)). Note that B(n) ⊆ RT (n)
as all of the parts of partitions in B(n) come from T and the perimeter Γ(f(π)) = n by
(38). To remove confusion, we will let η denote partitions from rT (n), where η = (η1, . . . , ηl).
Similarly to before, we have that ηi = bm for some m. We will enumerate this such that
ηi = bmi

. Let y = δm1 . Now, we can rewrite B(n) as

B(n) = {λ ∈ RT (n) | λi = b0, for i > l − y}.

It is thus apparent that |B(n)| ≤ |RT (n)| so it remains to show that |B(n)| = |RS(n)|.
To do so, we construct an inverse f−1 : B(n) → RS(n). We have for η ∈ B(n) that
f−1(η) = (f−1(η)1, . . . , f

−1(η)l−y) where

f−1(η)i = ami
for i ≤ l − y.

We now show that this is, in fact, the inverse of f under its image. Let π ∈ RS(n), where
π = (aj1 , . . . , ajk). We have that f(π) = (bj1 , . . . , bjk , b0, . . . , b0), where b0 is repeated x = δj1
times. After re-indexing, we have that f(π) = (bm1 , . . . , bml

), where l = k+x and mi = ji for
i ≤ k, and otherwise mi = 0. Now, since we must have m1 = j1, we know that y = δm1 = x.
We also know that f(π) ∈ B(n), as mi = 0 for i > l − y = k. Finally, we have that

f−1(f(π)) = (am1 , . . . , amk
) = (aj1 , . . . , ajk) = π.
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We now have that f : RS(n) → B(n) is a bijection, and since B(n) ⊆ RT (n), we are left
with

rS(n) = |RS(n)| = |B(n)| ≤ |RT (n)| = rT (n).

□

We now provide an example of the injection used in the previous proof, as this process is
easier to understand by examining the diagram of a partition.

Example 4.6. In Figure 1, we display a visual example of the function f(π) from Theorem
1.5. Here we have S = {2, 4, 6, 10, . . .} and T = {1, 3, 5, 7, . . .} with π = (10, 6, 2, 2, 2) and
f(π) = η = (7, 5, 1, 1, 1, 1, 1, 1). Note that the perimeter Γ(π) = Γ(η) = 14.

Figure 1. Example of Injection

Now that Theorem 1.5 has been proven, we shall first provide applications, and then
propose extensions loosening the requirements on the sets S, T further.

Remark 4.7. As in the regular partition setting, the existence of a fixed perimeter S-T
theorem motivates some useful results, as well as simplified proofs of existing theorems. For
instance, the inequalities (12), (13), (14), (15) given by [12, Thm. 1.5, Prop. 1.6] follow
immediately from Theorem 1.5.

We may adapt the injection f used to prove Theorem 1.5 for a more generalized version
the same theorem. It is immediately clear that the requirement of ai ≥ bi for i ≥ 0 may be
changed to i ≥ 1 in Theorem 1.5. Namely, if the largest part of a partition in the adapted
RS(n) is equal to aj for j ≥ 1, then the same injection f : RS(n) → RT (n) works directly. If
the largest part of such a partition is equal to a0, then we adapt our mapping. In this case,
the partition must consist entirely of parts equal to a0, allowing us to map this directly to
a partition of the same perimeter consisting of only parts equal to b0 so long as n ≥ b0. We
are motivated to make the following conjecture, which appears to hold from initial testing.
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Conjecture 4.8. Let S = {a0, a1, a2, . . . } and T = {b0, b1, b2, . . . } where ai+1 > ai and
bi+1 > bi for i ∈ N0 as well as ai ≥ bi for i ≥ k. Then there is some N such that for any
n ≥ N ,

rT (n) ≥ rS(n).

When k ≥ 1, the same injection used in the proof of Theorem 1.5 still holds for partitions
counted by rS(n) with largest part equal to aj, j ≥ k. However, if the largest part is equal
to aj for j < k, adapting our injection becomes an unintuitive counting problem, as we must
prove that there is ample room for these partitions to be mapped into RT (n).

4.4. A Conjecture Concerning the Analogue of Kang-Kim Results. Theorem 2.2
of the regular partition setting considers Alder-type inequalities while allowing the modulus
and distinctness to change independently of each other. To work towards a similar result in

the fixed perimeter we define the following function, generalizing ℓ
(a)
d (n) defined by Chen et

al. [12]. Note that we have changed notation from Chen et al. by shifting the modulus from
d + 3 to d to allow for cleaner proofs. Let a, b, d, n positive integers and 0 < a < b ≤ d and
n ≥ 0.

ℓ
(a,b)
d (n) := r(n | parts are ≡ a, b (mod d)).

We also define the following refinement.

ℓ
(a,b)
d (α, λ) = ℓ

(a,b)
d (α, λ, n)

= r(n | parts are ≡ a, b (mod d) with largest part α and λ parts).

We further define L(a,b)
d (n) to be the set of partitions counted by ℓ

(a,b)
d (n). Recall from the

introduction that we have

h
(a)
d (n) := r(n | parts are d-distinct and ≥ a),

f
(a)
d (n) := r(n | parts are ≡ a(mod d+ 1)).

To consider an analogue for Theorem 2.2, we compare h
(a)
d (n) and ℓ

(a,b)
d (n). We make the

following conjecture.

Conjecture 4.9. For positive integers 0 < m1 < m2 ≤ m, 0 < a ≤ d,

lim
n→∞

(
h
(a)
d (n)− ℓ(m1,m2)

m (n)
)
=

{
+∞ m > 2(d+ 1),

−∞ m < 2(d+ 1).

Furthermore if m = 2(d+ 1), then

lim
n→∞

(
h
(a)
d (n)− ℓ(m1,m2)

m (n)
)
=


0 m1 = a,m2 = a+ (d+ 1),

+∞ m1 ≥ a,m2 ≥ a+ (d+ 1), not both equal,

−∞ m1 ≤ a,m2 ≤ a+ (d+ 1), not both equal.

When m1 > a,m2 < a+ (d+ 1) or m1 < a,m2 > a+ (d+ 1), the result is unclear from our
experimentation.
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Remark 4.10. A first insight into proving this conjecture comes from the result (8), stating

that h
(a)
d (n) = f

(a)
d (n). Since f

(a)
d (n) considers parts equivalent to a modulo d + 1, we can

instead consider parts equivalent to a, a + d + 1 modulo 2(d + 1), giving us that h
(a)
d (n) =

f
(a)
d (n) = ℓ

(a,a+d+1)
2(d+1) (n). Thus, our problem reduces to proving shift inequalities for a general

ℓ
(a,b)
d (n).
From here, the second set of equalities, for the case when m = 2(d + 1), becomes quite

simple to prove. Let a′, b′ ∈ N such that a′ ≥ a and b′ ≥ b. We can apply Theorem 1.5 to
have

ℓ
(a,b)
d (n) ≥ ℓ

(a′,b′)
d (n).

Applying this to h
(a)
d = ℓ

(a,a+d+1)
2(d+1) (n) and ℓ

(m1,m2)
m immediately gives us our second set of

equalities.

The rest of the conjecture becomes much more tedious to prove, but we provide the
following lemmas that may be useful in future research.

Lemma 4.11. For positive integers d, a, b with a < b ≤ d, we have

L (a,b)
d (x, y, q) :=

∞∑
λ=0

∞∑
α=0

ℓ
(a,b)
d (α, λ)xαyλqα+λ−1 =

xayqa
(
1 + xb−aqb−a

1−yq

)
(1− yq)

(
1− xdqd

(1−yq)2

)
=
xbyqb + xayqa(1− yq)

(1− yq)2 − xdqd
.

Proof. To construct this generating function to count all π ∈ L(a,b)
d (x, y, q), we shall work

along such a partitions profile given by wπ. We refer readers the beginning of Section 4 and
the generating function proof in Section 4.1 for a complete description of this process. Each
part πi of such a partition π must be congruent to a or b modulo d, and, as such, the total
number of Es in our word must be congruent to a or b modulo d. We can split up wπ into
the following blocks, then encode them into a generating function. In each of the following,
j ∈ N0.

• Initialization: Our first a consecutive Es followed by j Ns.
• Type I: b− a consecutive Es followed by j Ns.
• Type II: d− b+ a consecutive Es followed by j Ns.
• Finalization: A single N to complete our profile.

The structure of our word will always begin with initialization and conclude with finaliza-
tion. Between these, the body of the partition will alternate between Type I and Type II as
many or as few times as necessary. As we explain next, the body (if nonempty) will always
begin with a Type I block, then begin alternating between Type II and Type I. We next
translate each of these blocks into the terms of a partition rather than our word notation.

• Initialization requires our partition to be in L(a,b)
d by ensuring the smallest part is

≥ a, allowing for j inclusions of this part.
• Type I takes a part size from being ≡ a (mod d) to the next part size ≡ b (mod d),
then allowing for j inclusions of this part.
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• Type II takes a part size from being ≡ b (mod d) to the next part size ≡ a (mod d),
then allowing for j inclusions of this part.

• Finalization ends our profile, ensuring we include ≥ 1 part of the current size.

As the initial step brings our current part size to being ≡ a (mod d), it must be followed by
a Type I block, if the body is nonempty. We now convert these into generating functions.

• Initialization: xaqa(1 + yq + y2q2 + · · · ) = xaqa

1−yq

• Type I: xb−aqb−a(1 + yq + y2q2 + · · · ) = xb−aqb−a

1−yq

• Type II: xd−b+aqd−b+a(1 + yq + y2q2 + · · · ) = xd−b+aqd−b+a

1−yq

• Finalization: y

We omit a q for finalization to ensure that n = α + λ− 1. Together, we have

L (a,b)
d (x, y, q)

=
xayqa

1− yq

(
1 +

xb−aqb−a

1− yq
+
xb−aqb−a

1− yq

xd−b+aqd−b+a

1− yq
+
xb−aqb−a

1− yq

xd−b+aqd−b+a

1− yq

xb−aqb−a

1− yq
+ · · ·

)
=

xayqa

1− yq

(
1 + xb−aqb−a

1−yq

1− xd−b+aqd−b+a

1−yq
xb−aqb−a

1−yq

)

=
xayqa

(
1 + xb−aqb−a

1−yq

)
(1− yq)

(
1− xdqd

(1−yq)2

) .
□

We also provide an explicit count for ℓ
(a,b)
d (n), given by the following lemma.

Lemma 4.12. For integers a < b ≤ d and n ≥ 0 we have that

ℓ
(a,b)
d (n) =

⌊n−a
d

⌋∑
k=0

(
n− a− dk + 2k

n− a− dk

)
+

⌊n−b
d

⌋∑
k=0

(
n− b− dk + 2k + 1

n− b− dk

)
.

Proof. As in the first proof of Section 4.3 and in [12, Pf. of Lemma 4.3], we shall sum over

the possible largest parts for partitions in L(a,b)
d (n). We have

ℓ
(a,b)
d (n) =

∑
1≤α≤n
α≡a (d)

ℓ
(a,b)
d (α, n− α + 1)

=
∑

1≤α≤n
α≡a,b (d)

ℓ
(a,b)
d (α, n− α + 1) +

∑
1≤α≤n
α≡b (d)

ℓ
(a,b)
d (α, n− α + 1)

=

⌊n−a
d

⌋∑
k=0

ℓ
(a,b)
d (a+ dk, n− a− dk + 1) +

⌊n−b
d

⌋∑
k=0

ℓ
(a,b)
d (b+ dk, n− b− dk + 1).(39)

We shall determine the value of ℓ
(a,b)
d (α, λ) for a given α, λ using a stars and bars counting

technique. We know by definition of ℓ
(a,b)
d (n) that we must have α ≡ a, b (mod d). With α
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fixed, the remaining λ− 1 parts must be chosen from the set

Sα = {1 ≤ x ≤ α | x ≡ a, b (mod d)}.

Thus,

ℓ
(a,b)
d (α, λ) =

(
|Sα|+ λ− 2

λ− 1

)
.(40)

We shall now determine |Sα|. We have

Sα ={1 ≤ a+ dj ≤ α | j ∈ Z} ⊔ {1 ≤ b+ dj ≤ α | j ∈ Z}
={a+ dj | 0 ≤ j ≤ ⌊α−a

d
⌋} ⊔ {b+ dj | 0 ≤ j ≤ ⌊α−b

d
⌋}.

This gives us

|Sα| = ⌊α−a
d
⌋+ ⌊α−b

d
⌋+ 2 =

{
2
(
α−a
d

)
+ 1 α ≡ a (mod d),

2
(
α−b
d

)
+ 2 α ≡ b (mod d).

(41)

Plugging (41) into (40) gives

ℓ
(a,b)
d (α, λ) =


(
2
(
α−a
d

)
+ λ− 1

λ− 1

)
α ≡ a (mod d),(

2
(
α−b
d

)
+ λ

λ− 1

)
α ≡ b (mod d).

We now return to (39) to arrive at our desired result,

ℓ
(a,b)
d (n) =

⌊n−a
d

⌋∑
k=0

(
2k + (n− a− dk + 1)− 1

n− a− dk + 1− 1

)
+

⌊n−b
d

⌋∑
k=0

(
2k + (n− b− dk + 1)

n− b− dk + 1− 1

)

=

⌊n−a
d

⌋∑
k=0

(
n− a− dk + 2k

n− a− dk

)
+

⌊n−b
d

⌋∑
k=0

(
n− b− dk + 2k + 1

n− b− dk

)
.

□

4.5. A Beck-Type Companion Identity for a Result of Chen et. al. Motivated by
the recent developments allowing for Beck-type companions to be derived for many partition
counting identities, we sought a companion for the identity of Chen et al. [12, Thm. 1.4]
given by

f
(a)
d (n) = h

(a)
d (n).

We shall first create a generalized definition to denote the excess in number of parts, as was
used in Section 3.2. For partition counting functions a(n) and b(n), we define an operator
E,

E(a(n), b(n)) :=
∑

π∈A(n)

ℓ(π)−
∑

π∈B(n)

ℓ(π),
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where ℓ(π) is used to count the number of parts of a partition π. Furthermore, if A(q) (resp.
B(q)) is the generating function for a(n) (resp. b(n)), then we have

E(A(q),B(q)) :=
∞∑
n=0

E(a(n), b(n))qn.

In the following lemma, we derive the generating function for E(f
(a)
d (n), h

(a)
d (n)).

Lemma 4.13. For positive integers n, d, a with a ≤ d, we have that

E(F (a)
d (q),H(a)

d (q)) =
∞∑
n=0

E(f
(a)
d (n), h

(a)
d (n))qn =

qa+1 − qa+d+1

(1− q − qd+1)2
.

Proof. By Chen et al. [12], we have the following refined generating functions for f
(a)
d (n)

and h
(a)
d (n).

F (a)
d (x, y, q) =

∞∑
λ=0

∞∑
α=0

f
(a)
d (α, λ)xαyλqα+λ−1 =

xayqa

1− yq − xd+1qd+1
,

H(a)
d (x, y, q) =

∞∑
λ=0

∞∑
α=0

h
(a)
d (α, λ)xαyλqα+λ−1 =

xayqa

1− xq − xdyqd+1
.

Recall that in these formulas λ refers to the leg length, or number of parts within a given

partition. In order to find E(F (a)
d (q),H(a)

d (q)) we can differentiate with respect to y to count
λ for each partition, then set x = y = 1. We get

∂

∂y

∣∣∣∣
x=y=1

F (a)
d (x, y, q) =

xaqa(1− xq − xdyqd+1)− xayqa(−q)
(1− yq − xd+1qd+1)2

∣∣∣∣
x=y=1

=
qa − qa+1 − qa+d+1 + qa+1

(1− q − qd+1)2
=

qa − qa+d+1

(1− q − qd+1)2

and

∂

∂y

∣∣∣∣
x=y=1

H(a)
d (x, y, q) =

xaqa(1− xq − xdyqd+1)− xayqa(−xdqd+1)

(1− xq − xdyqd+1)2

∣∣∣∣
x=y=1

=
qa − qa+1 − qa+d+1 + qa+d+1

(1− q − qd+1)2
=

qa − qa+1

(1− q − qd+1)2
.

To find E(F (a)
d (q),H(a)

d (q)), we take the difference of the above terms. We then have

E(F (a)
d (q),H(a)

d (q)) =
qa − qa+d+1

(1− q − qd+1)2
− qa − qa+1

(1− q − qd+1)2

=
qa+1 − qa+d+1

(1− q − qd+1)2
.

□
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We now construct a function which will provide our Beck-type identity. For positive

integers n, d, a with d ≥ 2, a ≤ d, we let G
(a)
d (n) denote the set of partitions π = (π1, . . . , πr)

with perimeter Γ(π) = n that are constructed by the following algorithm.

(i) Let πr+1 := a,

(ii) πi =

{
πi+1 or πi+1 + d or πi+1 + (d− 1), if πi+1 ≡ a (mod d)

πi+1 or πi+1 + d, if πi+1 ≡ a− 1 (mod d)
for 2 ≤ i ≤ r,

(iii) π1 bounded by ⌊π2

d
⌋d+ a < π1 ⩽ ⌊π2

d
⌋d+ a+ d.

We further let g
(a)
d (n) denote |G(a)

d (n)|. Alternatively,
g
(a)
d (n) = r(n |
(a) largest part occurs exactly once
(b) all other parts are ≡ a, a− 1(mod d) and differ by at most d
(c) smallest part = a, a+ d, or a+ d− 1
(d) body of partition can be split into exactly two (possibly empty) sections containing

only parts ≡ a(mod d) or only parts ≡ a − 1(mod d), with the section containing
parts ≡ a− 1(mod d) closer to the top

(e) if section containing parts ≡ a−1(mod d) is nonempty, then largest part differs from
neighbor by ≥ 2 and ≤ d+1, else largest part differs from neighbor by ≥ 1 and ≤ d).

Theorem 4.14. For positive integers n, d, a with d ≥ 2 and a ≤ d, we have

G(a)
d (x, y, q) =

∞∑
λ=0

∞∑
α=0

g
(a)
d (α, λ)xαyλqα+λ−1 =

xa+1yqa+1(1− xdqd)

(1− yq)(1− xq)(1− xdyqd+1

1−yq
)2
.(42)

In particular,

E(f
(a)
d (n), h

(a)
d (n)) = g

(a)
d (n).(43)

Proof. By taking x = y = 1 in (42), we have

G(a)
d (1, 1, q) =

∞∑
n=1

g
(a)
d (n)qn =

qa+1(1− qd)

(1− q)2(1− qd+1

1−q
)2

=
qa+1 − qa+d+1

(1− q − qd+1)2
=

∞∑
n=1

E(f
(a)
d (n), h

(a)
d (n))qn

by Lemma 4.13. So we are left with (43).
To prove (42), we will interpret the definition and then translate it into a generating

function. We begin with the smallest part πr of the partition and build our way up to the
largest part π1. The body of the partition, described by Condition (ii), can be split into two
sections; Section A consisting of parts equivalent to a modulo d and Section B consisting of
parts equivalent to a − 1 modulo d. We claim Condition (ii) requires that the body of the
partition consists of Section A followed by Section B, as is given by (d).
Considering some part πi in the body of the partition, we will examine the different cases

of Condition (ii). The first case considers when πi−1 ≡ a (mod d). Then πi may either
remain in Section A (πi = πi+1 or πi+1 + d) or swap to Section B (πi = πi+1 + (d− 1)). The
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second case of (ii) considers when πi−1 ≡ a − 1 (mod d). Here πi is required to remain in
Section B (πi = πi+1 or πi+1 + d). Then our claim is satisfied as Section B cannot precede
Section A.

Condition (i) initializes our algorithm and ensures that πr = a, a+d, or a+d−1, as stated
by (c). Condition (iii) finalizes the algorithm and determines the possible options for πi. To
do so, it finds smallest integer ≡ a(mod d) and ≥ π2 and allows π1 to be drawn from the
next d integers. For example, if π2 = a+ dk then π1 = a+ dk+1, a+ dk+2, . . . , a+ dk+ d.
Observe that Sections A, B may be empty. If πr = a + d− 1, then we surpass Section A

as our smallest part already lies in Section B. If π2 is in Section A, then we surpass Section
B and go to the finalization term.

Now, we will translate this into a generating function split into four sections: (I)nitialization,
Section (A), Section (B), and (F)inalization. We will consider the profile taken on by the
partition through each of these sections, first by describing the possible routes outlined by

our conditions on π ∈ G
(a)
d (n). We have the following possibilities.

• IABF
• IAF
• IBF
• IF

Note that each route must begin with initialization and end with finalization. We encode
each section individually but will combine them in our generating function.

Initialization: We encode Condition (i) by beginning our profile with a steps E and no
steps N , to simulate the previous part (πr+1) being equal to a. We can now either repeat
this part j ≥ 0 times or take d (resp d − 1) steps E. The latter option is encoded in our
generating function for Section A (resp. B). So allowing for j steps N , initialization takes
the form

xaqa(1 + yq + (yq)2 + (yq)3 + · · · ) = xaqa

1− yq
.

Section A: Traversing our profile through Section A, we can either take a single step N
(πi = πi+1) or take d steps E followed by a single step N (πi = πi+1+ d). These are encoded
by yq and xdqd+1y, respectively. We can reinterpret this by considering blocks based on when
πi+1 + d is chosen and allowing for j ≥ 0 steps N within each block. Each of these blocks
has the following format.

xdyqd+1(1 + yq + (yq)2 + (yq)3 + · · · ) = xdyqd+1

1− yq
.

Now, Section A in total will contain k ≥ 0 of these blocks. So, section A has the format

1 +
xdyqd+1

1− yq
+ (

xdyqd+1

1− yq
)2 + · · · =

(
1− xdyqd+1

1− yq

)−1

.

Section B: Traversing our profile through Section B takes on almost the same form as
Section A, except that we must include the shift from A into B. To do so, we will prepend
a new block which encodes the option πi = πi+1 + (d− 1). As this shift can only occur once
in the partition, we need only include it a single time. We will also allow for the part of this
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size to be repeated j ≥ 0 times, or j steps N . So, our new block has the format

xd−1yqd

1− yq
,

and overall Section B has the format

xd−1yqd

1− yq

(
1− xdyqd+1

1− yq

)−1

.

Finalization: To determine our final part, we first find the smallest integer ≥ π2 that is
equivalent to a modulo d, allowing for moves E until the current arm length is equivalent to
a modulo d. If we move from A to F or I to F, then our arm length is already equivalent to
a modulo d. If we move from B to F, then we need one move E to become equivalent to a
modulo d. We will denote these cases FA and FB respectively, and we will first consider FA

then adapt it to FB by prepending a move E.
If our current arm length is equivalent to a modulo d, we need to allow for π1 to be drawn

from the next d integers, so we allow for k moves E where 1 ≤ k ≤ d. Since finalization
includes exactly one part, we include one move N after our k moves E. Now, our FA takes
on the format

y(xq + x2q2 + · · ·+ xdqd) =
xyq(1− (xq)d)

1− xq
.

In the above, we do not include a q for the move N to ensure that in our final generating
function n = α + λ − 1. We obtain a generating function for FB by prepending a move E,
so our format is

xq ∗ y(xq + x2q2 + · · ·+ xdqd) = xq
xyq(1− (xq)d)

1− xq
.

Now that we have encoded each of our sections, we put them together in such a way that

allows for every possible route. Our generating function for g
(a)
d (n) will take the form

IA(FA + B(FB)).

Note that since Section A = 1+xdqd+1y
1−yq

+· · · , our profile can pass through section A unchanged

by multiplying through the 1. We now substitute each of these sections in to obtain our
complete generating function.

G(a)
d (x, y, q)

=

(
xaqa

1− yq

)(
1− xdyqd+1

1− yq

)−1

·

[
xyq(1− (xq)d)

1− xq
+

(
xd−1yqd

1− yq

(
1− xdyqd+1

1− yq

)−1
)(

xq
xyq(1− (xq)d)

1− xq

)]

=

(
xaqa

1− yq

)(
1− xdyqd+1

1− yq

)−1
[
1 +

xdyqd+1

1− yq

(
1− xdyqd+1

1− yq

)−1
](

xyq(1− (xq)d)

1− xq

)
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=

(
xaqa

1− yq

)(
1− xdyqd+1

1− yq

)−1
[(

1− xdyqd+1

1− yq

)−1
](

xyq(1− (xq)d)

1− xq

)
=

xa+1yqa+1(1− xdqd)

(1− yq)(1− xq)(1− xdyqd+1

1−yq
)2
.

□

5. Fixed Perimeter Analogues of Parity Inequalities in Partitions

Recall that ro(n) (resp. re(n)) is the number of perimeter n partitions having more odd
parts than even parts (resp. more even parts than odd parts). We will use R in place of r to
denote the set of partitions counted by a particular partition counting function (for instance,
Re(n) denotes the set of partitions counted by re(n)). Throughout this section, let

ω(π) := (number of odd parts in π) − (number of even parts in π).

5.1. Parity Bias for Partitions with Restriction of Allowed Parts. Let rS(n) denote
the number of perimeter n partitions with no parts coming from S. Recall that we use S0 to
denote the empty set and Sk to denote the set of integers {1, 2, ..., k}. In the fixed perimeter
setting, we find that regular partition parity bias results can be generalized through an
injection technique, with slightly lower bounds required on n. In particular, we have below
that the fixed perimeter analogues of (16) and (18) are special cases given by k = 0 in (45)
and k = 1 in (44), respectively, and Theorem 1.7 is obtained by taking k = 0 in (44).

Theorem 5.1. Let k ∈ N0. For all n = 2k + 1 and n ≥ 2k + 3,

(44) r{S2k}
o (n) > r{S2k}

e (n),

and for all n = 2k + 2 and n ≥ 2k + 4,

(45) r{S2k+1}
o (n) < r{S2k+1}

e (n).

Proof. We begin by considering (44). The result is clear when n = 2k + 1 as the only
allowable partition is π = (n). The following mapping applies to partitions of perimeter

n ≥ 2k + 3. Consider a partition π ∈ R{S2k}
e (n) and define an injective mapping by

Ψ1 = φ1 ∪ ψ1 : R{S2k}
e (n) → R{S2k}

o (n).

(1) If π contains at least one part equal to 2k + 1, map π to π′′ via φ1 with π′ as an
intermediary step. First, delete the smallest part (of size 2k + 1). The resulting

partition π′ ∈ R{S2k}
e (n − 1) as we have only removed an odd part. Now add 1 to

each part of π′ to form π′′. The resulting partition π′′ has perimeter n with no parts

less than or equal to 2k and reverses the parity of each part in π′, thus π′′ ∈ R{S2k}
o (n).

(2) If π contains no parts equal to 2k+1, map π to π′′ via ψ1 with π
′ as an intermediary

step. First, subtract 1 from every part. The resulting partition π′ has perimeter
n − 1, reverses the parity of each part of π, and has minimum possible part size

2k + 1, thus π′ ∈ R{S2k}
o (n − 1). Now, append a new part of size 2k + 1 to π′. The

resulting partition π′′ has perimeter n, thus π′′ ∈ R{S2k}
o (n) as we have only added

an odd part of size 2k + 1.
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There exists a mapping for every π ∈ R{S2k}
e (n) since each π ∈ R{S2k}

e (n) either has a part
of size 2k + 1 or does not have a part of size 2k + 1. We now introduce the following sets.

Ea(n) = {π ∈ R{Sa}
e (n) | π has at least one part equal to a+ 1},

Ec
a(n) = {π ∈ R{Sa}

e (n) | π has no parts equal to a+ 1},

Ẽ(n) = {π ∈ R{Sa}
e (n) | ω(π) ≤ −2},

Oa(n) = {π ∈ R{Sa}
o (n) | π has at least one part equal to a+ 1},

Oc
a(n) = {π ∈ R{Sa}

o (n) | π has no parts equal to a+ 1},

Õ(n) = {π ∈ R{Sa}
o (n) | ω(π) ≥ 2},

Õa(n) = Õ(n) ∩Oa(n) and Õ
c
a(n) = Õ(n) ∩Oc

a(n),

Ẽa(n) = Ẽ(n) ∩ Ea(n) and Ẽ
c
a(n) = Ẽ(n) ∩ Ec

a(n).

Note that fixing a = 2k, R{S2k}
e (n) = E2k(n) ⊔ Ec

2k(n) and Õ(n) = Õ2k(n) ⊔ Õc
2k(n). We

have that φ1 is a mapping from E2k(n) to Õ
c
2k(n) and ψ1 is a mapping from Ec

2k(n) to Õ2k(n).

Both mappings are invertible: given π′′ ∈ Õc
2k+1(n), the unique corresponding π ∈ E2k(n)

is found by by subtracting 1 from every part in π′′ and adding a new smallest part of 2k.

Likewise, given π′′ ∈ Õ2k(n), the unique corresponding π ∈ Ec
2k(n) is found by deleting the

smallest part 2k and adding one to every part.

So φ1 and ψ1 are bijections and thus Ψ1 is a bijection from R{S2k}
e (n) to Õ(n) ⊊ R{S2k}

o (n).

The strict subset follows from the fact that for any choice of n we have R{S2k}
o (n)\ Õ(n) ̸= ∅.

(i.e., if n ≥ 2k + 3 odd then π = (n) ∈ R{S2k}
o (n) \ Õ(n), and if n ≥ 2k + 4 even then

π = (n− 2, 2k + 1, 2k + 1) ∈ R{S2k}
o (n) \ Õ(n)). We are left with (44),

r{S2k}
e (n) = |R{S2k}

e (n)| = |Õ(n)| < |R{S2k}
o (n)| = r{S2k}

o (n).

We adapt this process and apply it to (45). The result is clear when n = 2k + 1 as the
only allowable partition is π = (n), so we will suppose n ≥ 2k + 3. Consider a partition

π ∈ R{S2k+1}
o (n) and define an injective mapping

Ψ2 = ψ2 ∪ φ2 : R{S2k+1}
o (n) → R{S2k+1}

e (n)

as follows.

(1) If π contains at least one part equal to 2k + 2, map π to π′′ via φ2 with π′ as an
intermediary step. First, delete the smallest part (of size 2k + 2). The resulting

π′ ∈ R{S2k+1}
o (n− 1) as we have only removed an even part. Now, add 1 to each part

of π′. The resulting π′′ has perimeter n with no parts less than or equal to 2k + 1

and reverses the parity of each part in π′, thus π′′ ∈ R{S2k+1}
e (n).

(2) If π contains no parts equal to 2k+2, map π to π′′ via ψ2 with π
′ as an intermediary

step. First, subtract 1 from every part. The resulting partition π′ reverses the parity

of each part of π, and has minimum possible part size 2k, thus π′ ∈ R{S2k+1}
e (n− 1).

Now, append a new part of size 2k + 2 to π′. The resulting π′′ has perimeter n and

π′′ ∈ R{S2k+1}
e (n) as we have only added an even part of size 2k.
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There exists a mapping for every π ∈ R{S2k+1}
o (n) since every π ∈ R{S2k+1}

o (n) either has a
part equal to 2k + 2 or does not have a part equal to 2k + 2.

First note that fixing a = 2k+1, R{S2k+1}
o (n) = O2k+1(n)⊔Oc

2k+1(n) and Ẽ(n) = Ẽ2k+1(n)⊔
Ẽc

2k+1(n). We have that φ2 is a mapping from O2k+1(n) to Ẽc
2k+1(n) and ψ2 is a mapping

from Oc
2k+1(n) to Ẽ2k+1(n). Both mappings are invertible: given π′′ ∈ Ẽc

2k+1(n), the unique
corresponding π ∈ O2k+1(n) is found by subtracting 1 from every part in π′′ and adding

a new smallest part of 2k + 2. Likewise, given π′′ ∈ Ẽ2k+1(n), the unique corresponding
π ∈ Oc

2k+1(n) is found by deleting the smallest part 2k + 2 and adding one to every part.

So φ2 and ψ2 are bijections and thus Ψ2 is a bijection from R{S2k+1}
o (n) to

Ẽ(n)⊊ R{S2k+1}
e (n). The strict subset follows from the fact that for any choice of n we have

R{S2k+1}
e (n) \ Ẽ(n) ̸= ∅. (i.e., if n ≥ 2k + 4 even then π = (n) ∈ R{S2k+1}

e (n) \ Ẽ(n), and if

n ≥ 2k + 3 odd then π = (n− 2, 2k, 2k) ∈ R{S2k+1}
e (n) \ Ẽ(n)). We are left with (45).

r{S2k+1}
o (n) = |R{S2k+1}

o (n)| = |Ẽ(n)| < |R{S2k+1}
e (n)| = r{S2k+1}

e (n).

□

We now prove a generalization of the fixed perimeter analogue of Banerjee et al.’s result
(17), which is given by the special case of ℓ = 2 below.

Theorem 5.2. For ℓ ≥ 2 and for n ≥ ℓ− 1,

(46) r{Sℓ−2∪ℓ}
o (n) < r{Sℓ−2∪ℓ}

e (n)

for ℓ odd, and

(47) r{Sℓ−2∪ℓ}
e (n) < r{Sℓ−2∪ℓ}

o (n)

for ℓ even.

Proof. The result is clear for n = ℓ − 1 ≤ n ≤ ℓ + 1 as the only allowed parts are ℓ − 1 as
well as ℓ+1 for the final case, so the following will apply to n ≥ ℓ+2. Consider ℓ odd (resp.

ℓ even) and let π ∈ R{Sℓ−2∪ℓ}
o (n) (resp. π ∈ R{Sℓ−2∪ℓ}

e (n)). We define an injective mapping

Ψa = ψ1a ∪ ψ2a ∪ ψ3a (resp. Ψb = ψ1b ∪ ψ2b ∪ ψ3b) from R{Sℓ−2∪ℓ}
o (n) to R{Sℓ−2∪ℓ}

e (n) (resp.

R{Sℓ−2∪ℓ}
e (n) to R{Sℓ−2∪ℓ}

o (n)) as follows.

• If π contains at least one part equal to ℓ − 1 (i.e., π = (π1, . . . , πk−1, ℓ − 1)), map
π to π′′ via ψ1a (resp. ψ1b) with π′ as an intermediary step. First, delete the final

part equal to ℓ− 1. The resulting π′ ∈ R{Sℓ−2∪ℓ}
o (n− 1) (resp. π′ ∈ R{Sℓ−2∪ℓ}

e (n− 1))
as we have only removed an even (resp. odd) part. Now, add 1 to every part in π′

except any other part equal to ℓ− 1. The resulting π′′ has perimeter n and reverses
the parity of every part in π except perhaps any additional parts equal to ℓ− 1, thus

π′′ ∈ R{Sℓ−2∪ℓ}
e (n) (resp. π′′ ∈ R{Sℓ−2∪ℓ}

o (n)).
• If π does not contain any parts equal to ℓ−1 but contains m > 1 parts equal to ℓ+1,
map π to π′′ via ψ2a (resp. ψ2b) with π

′ as an intermediary step. First, delete 1 from
every part but the part(s) equal to ℓ+ 1. Replace m− 1 of the parts equal to ℓ+ 1
with m−1 parts equal to ℓ−1. The resulting partition π′ reverses the parity of every

part in π except perhaps any additional parts equal to ℓ+1, so π′ ∈ R{Sℓ−2∪ℓ}
e (n− 1)
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(resp. π′ ∈ R{Sℓ−2∪ℓ}
o (n − 1)). Now, append a new smallest part of ℓ − 1. Since

we have only added an even (resp. odd) part, the resulting π′′ ∈ R{Sℓ−2∪ℓ}
e (n) (resp.

π′′ ∈ R{Sℓ−2∪ℓ}
o (n)).

• If π does not contain any parts equal to ℓ − 1 or parts equal to ℓ + 1, then map
π to π′′ via ψ3a (resp. ψ3b) with π′ as an intermediary step. First, delete 1 from

every part of π. The resulting π′ ∈ R{Sℓ−2∪ℓ}
e (n − 1) (resp. π′ ∈ R{Sℓ−2∪ℓ}

o (n − 1)).

Now, we add a new smallest part of ℓ + 1. Thus, the final π′′ ∈ R{Sℓ−2∪ℓ}
e (n) (resp.

π′ ∈ R{Sℓ−2∪ℓ}
o (n)).

A mapping exists for every π ∈ R{Sℓ−2∪ℓ}
o (n) (resp. R{Sℓ−2∪ℓ}

e (n)) since every π either has
some part(s) equal to ℓ− 1, has no parts equal to ℓ− 1 but some part(s) equal to ℓ + 1, or
has no parts equal to ℓ− 1 or equal to ℓ+ 1. We introduce the following sets.

A = {π | π contains at least one part equal to ℓ− 1 and at least one part equal to ℓ+ 1},
B = {π | π contains at least one part equal to ℓ− 1 and no parts equal to ℓ+ 1},
C = {π | π contains no parts equal to ℓ− 1 and at least one part equal to ℓ+ 1},
D = {π | π contains no parts equal to ℓ− 1 and no parts equal to ℓ+ 1},
ES(n) = {π ∈ R{Sℓ−2∪ℓ}

e (n) ∩ S | S ∈ {A,B,C,D}},
OS(n) = {π ∈ R{Sℓ−2∪ℓ}

o (n) ∩ S | S ∈ {A,B,C,D}},

Õ(n) = {π ∈ R{Sℓ−2∪ℓ}
o (n) | ω(π) ≥ 2},

Ẽ(n) = {π ∈ R{Sℓ−2∪ℓ}
e (n) | ω(π) ≤ −2},

ÕS(n) = Õ(n) ∩OS(n) and ẼS(n) = Ẽ(n) ∩ ES(n).

Note, considering ℓ odd, that R{Sℓ−2∪ℓ}
o (n) = OA(n)⊔OB(n)⊔OC(n)⊔OD(n), and Ẽ(n) =

ẼA(n)⊔ẼB(n)⊔ẼC(n)⊔ẼD(n). Note ψ1a is a mapping from OA(n)∪OB(n) to ẼB(n)∪ẼD(n),

ψ2a is a mapping from OC(n) to ẼA(n), and ψ3a is a mapping from OD(n) to ẼC(n). All

mappings are invertible: given π′′ ∈ ẼB(n) ∪ ẼD(n), the unique corresponding π ∈ OA(n) ∪
OB(n) is found by deleting ℓ − 1 from every part not equal to ℓ − 1 and appending an

additional smallest part of ℓ− 1. Given π′′ ∈ ẼA(n), the unique corresponding π ∈ OC(n) is
found by deleting one part equal to ℓ− 1, adding one to every part but the ℓ− 1’s and one
part equal to ℓ+ 1, and replacing all parts equal to ℓ− 1 with parts equal to ℓ+ 1. Finally,

given π′′ ∈ ẼC(n), the unique corresponding π ∈ OD(n) is found by deleting one part of size
ℓ+ 1 and adding ℓ− 1 to every remaining part.

So ψ1a, ψ2a and ψ3a are bijections and thus Ψa is a bijection from R{Sℓ−2∪ℓ}
o (n) to Ẽ(n) ⊊

R{Sℓ−2∪ℓ}
e (n). The strict subset comes from the fact that for any choice of n we have

R{Sℓ−2∪ℓ}
e (n) \ Ẽ(n) ̸= ∅. If n ≥ ℓ + 2 even, then π = (n) ∈ R{Sℓ−2∪ℓ}

e (n) \ Ẽ(n), and if

n ≥ ℓ+ 3, then π = (n, n− 1, n− 1) ∈ R{Sℓ−2∪ℓ}
e (n) \ Ẽ(n). We are left with (46).

r{Sℓ−2∪ℓ}
o (n) =| R{Sℓ−2∪ℓ}

o (n)| = |Ẽ(n)| < |R{Sℓ−2∪ℓ}
e (n)| = r{Sℓ−2∪ℓ}

e (n).
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Likewise, for ℓ even, R{Sℓ−2∪ℓ}
e (n) = EA(n)⊔EB(n)⊔EC(n)⊔ED(n) and Õ(n) = ÕA(n)⊔

ÕB(n) ⊔ ÕC(n) ⊔ ÕD(n). We may observe that ψ1b is a mapping from EA(n) ∪ EB(n) to

ÕB(n)∪ÕD(n), ψ2b is a mapping from EC(n) to ÕA(n), and ψ3b(n) is a mapping from ED(n)

to ÕC(n).
All mappings are invertible by the same process as the analogous mappings for ℓ − 1

odd, so ψ1b, ψ2b and ψ3b are bijections and thus Ψb is a bijection from R{Sℓ−2∪ℓ}
e (n) to

Õ(n) ⊊ R{Sℓ−2∪ℓ}
o (n). The strict subset comes from the fact that for any choice of n we

have R{Sℓ−2∪ℓ}
o (n) \ Õ(n) ̸= ∅. If n ≥ ℓ + 3 odd then π = (n) ∈ R{Sℓ−2∪ℓ}

o (n) \ Õ(n)), and if

n ≥ ℓ+ 2 even then π = (n− 2, n− 1, n− 1) ∈ R{Sℓ−2∪ℓ}
o (n) \ Õ(n)). We are left with (47).

r{Sℓ−2∪ℓ}
e (n) = |R{Sℓ−2∪ℓ}

e (n)| = |Õ(n)| < |R{Sℓ−2∪ℓ}
o (n)| = r{Sℓ−2∪ℓ}

o (n).

□

5.2. Parity Bias for Partitions with Fixed Degree of Bias. Let r(m,n) denote the
number of perimeter n partitions π such that ω(π) = m. We may consider fixed degree of
bias as a method of decomposing fixed perimeter partitions. In particular, we have

r(n) = r(0, n) + re(n) + ro(n) = r(0, n) +
n∑

m=1

(
r(m,n) + r(−m,n)

)
.

We find that the direction of inequality in our fixed perimeter analogue of (19) depends on
the parity of n, and is obtained by taking m = 1 below. We are also able to generalize this
result to any choice of m. Namely,

Theorem 5.3. Let n ≥ m ≥ 1. For m,n of the same parity,

(48) r(m,n) > r(−m,n).

For m,n of opposite parity,

(49) r(−m,n) > r(m,n).

Proof. The result is clear for n = m, m+ 1. The following argument applies for n ≥ m+ 2.
We first consider m, n both odd. Note that a partition in R(m,n) or R(−m,n) must have
an odd number of parts λ in order to have a bias of m odd, and thus must have largest
part α odd to have n = α + λ − 1 odd. We claim that for any choice of α, there are more
partitions in R(m,n) than in R(−m,n).

For a fixed α, let So (resp. Se) denote the set of odd parts (resp. even parts) less than
or equal to α. Using a stars and bars counting technique to select both the remaining odd
parts after fixing α and the even parts, we have that the number of ways to choose exactly
m more even parts than odd parts (including α in the total bias count) is given by(|So|+ λ−m−2

2
− 1

λ−m−2
2

)(|Se|+ λ+m
2

− 1
λ+m
2

)
.
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Likewise, the number of ways to choose exactly m more odd parts (including α in the total
bias count) than even parts is given by(|So|+ λ+m−2

2
− 1

λ+m−2
2

)(|Se|+ λ−m
2

− 1
λ−m
2

)
.

Suppose we have fixed α = 2k + 1. Then |So| = k + 1, |Se| = k, and we may rewrite
λ = n− α+ 1 = n− 2k. Substituting in and summing over all possible choices of k yielding
valid choices of α, we have for a given n that

r(−m,n) =
⌊n
2
⌋∑

k=1

(
k + 1 + n−2k−m−2

2
− 1

n−2k−m−2
2

)(
k + n−2k+m

2
− 1

n−2k+m
2

)
,(50)

r(m,n) =

⌊n
2
⌋∑

k=1

(
k + 1 + n−2k+m−2

2
− 1

n−2k+m−2
2

)(
k + n−2k−m

2
− 1

n−2k−m
2

)
.(51)

We claim each term in the sum in (51) is greater than the corresponding term in (50).
Namely,(

k + 1 + n−2k−m−2
2

− 1
n−2k−m−2

2

)(
k + n−2k+m

2
− 1

n−2k+m
2

)
=

( n−m−2
2

n−m−2
2

− k

)( n+m−2
2

n+m
2

− k

)
=

(
n−m−2

2
· . . . · (n−m−2

2
− k + 1)

)
·
(
n−m−2

2
+m) · . . . · (n−m−2

2
+m− k + 2)

)
k!(k − 1)!

<

(
n−m−2

2
· . . . · (n−m−2

2
− k + 2)

)
·
(
(n−m−2

2
+m) · . . . · (n−m−2

2
+m− k + 1)

)
k!(k − 1)!

=

( n+m−2
2

n+m−2
2

− k

)( n−m−2
2

n−m
2

− k

)
=

(
k + 1 + n−2k+m−2

2
− 1

n−2k+m−2
2

)(
k + n−2k−m

2
− 1

n−2k−m
2

)
,

where the inequality follows from the fact that (n−m−2
2

− k + 1) < (n−m−2
2

+m− k + 1). So
(48) holds for n, m both odd. For n, m both even, we have α = 2k + 1 odd and λ = n− 2k
even. Then, given n, r(−m,n) is given by (50) and r(m,n) is given by (51). So (48) holds
for n, m both even by the same reasoning.

For n even, m odd, we still must have an odd number of parts λ to have m odd, thus we
have α = 2k even so that n− α− 1 is even. So, |So| = |Se| = k and λ = n− 2k + 1. Then,
for a given n,

r(m,n) =

⌊n
2
⌋∑

k=1

(
k + n−2k+m+1

2
− 1

n−2k+m+1
2

)(
k + n−2k−m−1

2
− 1

n−2k−m−1
2

)
,(52)

r(−m,n) =
⌊n
2
⌋∑

k=1

(
k + n−2k−m+1

2
− 1

n−2k−m+1
2

)(
k + n−2k+m−1

2
− 1

n−2k+m−1
2

)
.(53)

Each term in the sum in (53) is larger than the corresponding term in (52). In particular,



Generalized Partition Identities and Fixed Perimeter Analogues 41(
k + n−2k+m+1

2
− 1

n−2k+m+1
2

)(
k + n−2k−m−1

2
− 1

n−2k−m−1
2

)
=

( n+m−1
2

n+m+1
2

− k

)( n−m−3
2

n−m−1
2

− k

)
=

(
(n−m−1

2
+m) · . . . · (n−m−1

2
+m− k + 2)

)
·
(
(n−m−1

2
− 1) · . . . · (n−m−1

2
− k + 1)

)
((k − 1)!)2

<

(
(n−m−1

2
+m− 1) · . . . · (n−m−1

2
+m− k + 1)

)
·
(
n−m−1

2
· . . . · (n−m−1

2
− k + 2)

)
((k − 1)!)2

=

( n−m−1
2

n−m+1
2

− k

)( n+m−3
2

n+m−1
2

− k

)
=

(
k + n−2k−m+1

2
− 1

n−2k−m+1
2

)(
k + n−2k+m−1

2
− 1

n−2k+m−1
2

)
,

where the inequality follows from the fact that (n−m−1
2

+m) · (n−m−1
2

− k + 1) < (n−m−1
2

+

m− k + 1) · (n−m−1
2

). So (49) holds for n even, m odd.
For n odd, m even, we now have α = 2k even, so |So| = |Se| = k, and λ = n − 2k + 1

even. Then, given n, r(m,n) is given by (52), and r(m,n) is given by (53). Then (49) holds
for the same reasoning as above. □

5.3. Other Bias Generalizations. Let rdo(n) (resp. rde(n)) denote the number of perime-
ter n partitions π with distinct parts and ω(π) ≥ 1 (resp. ω(π) ≤ −1). We conjecture the
following fixed perimeter analogue of Theorem 2.4.

Conjecture 5.4. For all n odd and n ≥ 10 even,

rdo(n) > rde(n).

Computational evidence suggests the above inequality holds, and we prove the following
lemma that may be helpful in future research.

Lemma 5.5. For all n,

rdo(n) =

⌊n
2
⌋∑

k=1

n−2k∑
a=⌈n−2k

2
⌉+1

(
k

a

)(
k − 1

n− 2k − a

)
+

⌊n
2
⌋∑

k=1

n−2k−1∑
a=⌈n−2k−1

2
⌉

(
k

a

)(
k

n− 2k − 1− a

)
,(54)

rde(n) =

⌊n
2
⌋∑

k=1

n−2k∑
a=⌈n−2k

2
⌉

(
k − 1

a

)(
k

n− 2k − a

)
+

⌊n
2
⌋∑

k=1

n−2k−1∑
a=⌈n−2k−1

2
⌉+1

(
k

a

)(
k

n− 2k − 1− a

)
.

(55)

Proof. The first term in each represents choices of α = 2k even, and the second α = 2k + 1
odd. The index k then sums over all possible choices of α, and the index a tracks the number
of odd parts chosen in (54) and the number of even parts chosen in (55) out of the remaining
n − α parts to be chosen. For fixed a and fixed α, there then remain n − 2k − a parts to
choose for α even or n − 2k − 1 − a for α odd. For α = 2k even, there are k choices of
distinct odds and k − 1 choices of distinct evens smaller than α’ for α = 2k + 1 odd, there
are k distinct odds and k distinct evens smaller than α.

For α = 2k even, in order to have more odd parts than even parts overall, we must choose
at least ⌈n−2k

2
⌉ + 1 odd parts; in order to have more even parts than odd parts, we must

choose at least ⌈n−2k
2

⌉ even parts in addition to α. Likewise, for α = 2k + 1 odd, in order
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to have more odd parts than even parts overall, we must choose at least ⌈n−2k
2

⌉ odd parts
in addition to α; and, in order to have more even parts than odd parts, we must choose at
least ⌈n−2k

2
⌉+ 1 even parts. □

Although we haven’t yet proved Conjecture 5.4, we can prove the fixed perimeter analogue
of Theorem 2.5. Let ra,b,m(n) and rb,a,m(n) denote the number of partitions of perimeter n
with more parts congruent to a (mod m) than parts congruent to b (mod m) (resp. more
parts congruent to b (mod m) than parts congruent to a (mod m)). We have the following.

Theorem 5.6. For all n ⩾ 1 and 1 ⩽ a < b ⩽ m,

ra,b,m(n) ⩾ rb,a,m(n).

Note that Theorem 1.7 gives the case of Theorem 5.6 given by r1,2,2(n) ≥ r2,1,2(n) (allowing
for n = 2 by dropping the requirement that the inequality be strict).

Proof. For fixed a, b, both quantities are 0 when n < a and the theorem holds with equality.
The following mapping considers only choices of a, n such that n ≥ a. Consider π ∈
Rb,a,m(n). Define D1 = b − a and D2 = a +m − b to denote the distances between residue
classes. For a given π1, let B < π1 denote the nearest number to π1 congruent to b (mod m)
and A < π1 denote the nearest number to π1 congruent to b (mod m). We now define an
injective mapping Ψ : Rb,a,m(n) → Ra,b,m(n).

Case 1: π contains no parts ≡ a (mod m)

(1) The partition π must contain some number of parts ≡ b (mod m). As b > a, it
is clear from Theorem 1.5 that r(n | all parts ≡ b (mod m)) ≤ r(n | all parts ≡
a (mod m)). Then the image of partitions containing only parts So we need only
consider partitions having at least one part ̸≡ a, b (mod m). Map π to π′′ via ψ1 as
follows: replace each such part πb with a corresponding part of size πb−D1. Reorder
the parts as needed to maintain non-increasing order. The resulting partition π′

has perimeter n − D1 ≤ n′ ≤ n. Further, π′ is clearly unique to π and no two π
with either distinct configurations of parts ≡ a (mod m) or distinct configurations of
parts ̸≡ a (mod m) will map to the same π′. Otherwise, this would result in distinct
configurations of parts ≡ b (mod m) or distinct configurations of parts ̸≡ b (mod m),
respectively. Thus the mapping from π to π′ is an injection.

Let s < m be the smallest positive integer s ̸= a, b. Such an s exists for every legal
choice of a, b, m except for a = 1, b = 2, m = 2, for which is given by Theorem 1.7.
Generate π′′ from π by adding n − n′ parts of size s to π′ and reordering the parts
as needed to maintain non-increasing order. Then π′′ ∈ Ra,b,m(n). The value of s is
recoverable from π′′ and thus the unique π′ is identifiable, so the mapping from π′ to
π′′ is also an injection, thus ψ1 is an injection.

Case 2: π contains at least one part ≡ a (mod m).

(1) If π1 is not congruent to a or b (mod m) and B > A, map π to π′ via ψ2. First replace
each part πb congruent to b (mod m) with a corresponding part of size πb −D1 and
each part πa congruent to a (mod m) with a corresponding part of size πa − D2 if
πa > a or with a part of size B if πa = a. Reorder the parts as needed to maintain
non-increasing order, noting that π1 will not be reordered and perimeter remains
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constant. The residue class of each πa and πb has switched, thus π′ ∈ Ra,b,m(n).
Note that π is uniquely recoverable from π′ by replacing parts π′

a and π′
b ̸= B with

parts equal to π′
a + D1 and π′

b + D2, respectively, and by replacing parts of size B
with parts of size a; thus ψ2 is an injection.

(2) If π1 is not congruent to a or b (mod m) and A > B, map π to π′ via ψ3 as follows:
replace each part πb congruent to b (modm) with a corresponding part of size πb−D1.
Replace each part πa congruent to a (mod m) except for any parts of size A with
a corresponding part of size πa − D2 if πa > a and with a part of size B if πa = a.
Reorder the part as needed to maintain non-increasing order, noting that π1 will not
be reordered and perimeter remains constant. The residue class of each πa and πb
has switched except for those parts of size A, thus π′ ∈ Ra,b,m(n). Note that π is
uniquely recoverable from π′ by replacing parts π′

a ̸= A and π′
b with parts equal to

π′
a +D1 and π′

b +D2, respectively; thus ψ3 is an injection.
(3) If π1 ≡ a (mod m) or π1 ≡ b (mod m) and condition (∗) below does not apply, map

π to π′ via ψ4. Replace each part πb congruent to b (mod m) with a corresponding
part of size πb −D1 if πb > b. If πb = b, replace πb with a part of size π1 if π1 ≡ a or
with a part of size A if π1 ≡ b. Replace each part πa congruent to a (mod m) with
a corresponding part of size πa −D2 if πa > a. If πa = a, replace πa with a part of
size π1 if π1 ≡ b or with a part of size B if π1 ≡ a. Reorder the parts as needed to
maintain non-increasing order. Repeat this process as many times as needed (with
a total odd number of repeats) to get back to a largest part of π1. The existence of
such a point after a total odd number of repeats is guaranteed by the exclusion of
partitions satisfying (∗). The final perimeter is still n and the residue class of each πa
and πb has switched, thus π

′ ∈ Ra,b,m(n). Note that π is uniquely recoverable from
π′ by reversing the process the minimum odd number of times needed to get back to
the original π1; thus ψ4 is an injection.

(4) Condition (∗): Either π1 ≡ a and every part πi ≡ b is of the form b+ tim with every
ti odd or π1 ≡ b and every part πi ≡ a is of the form b + tim with every t odd. In
this case, we will never reach a part of size a or b on an even number of repeats, so
we adjust the process described in case (3) to return to a largest part of π1 with an
odd number of repeats to preserve the desired direction of bias. Define ψ′

4 to be the
same as ψ4 except that now we discard the conditions concerning πa = a and πb = b
and replace them: if πb = b +m, replace πb with a part of size π1 if π1 ≡ a or with
a part of size A if π1 ≡ b. If πa = a +m, replace πa with a part of size π1 if π1 ≡ b
or with a part of size B if π1 ≡ a. Note that π is uniquely recoverable by the same
reasoning as case (3) and thus ψ′

4 is an injection.

A given π ∈ Ra,b,m(n) with n ≥ a must satisfy exactly one of the conditions of having no
parts ≡ a (mod m) or having at least one part ≡ a (mod m). Given the latter case, π
satisfies exactly one of π1 not congruent to a or b (mod m) and B > A, π1 not congruent to
a or b (mod m) and A < B, or π1 ≡ a or b (mod m) with (∗) either applying or not applying.
Thus exactly one mapping ψi applies to a given π.

We further note that the images of each ψi are disjoint. In particular, partitions π ∈
Rb,a,m(n) containing no parts ≡ a (mod m) and at least one part ̸≡ a, b (mod m) have their
image under ψ1 in the set of partitions π′ ∈ Ra,b,m(n) containing no parts ≡ b (mod m) and
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at least one part ̸≡ a, b (mod m). Partitions π ∈ Rb,a,m(n) having at least one part ≡ a
(mod m and largest part ̸≡ a, b (mod m) with B > A (resp. A > B) have their image under
ψ2 (resp. ψ3) in the set of partitions π′ ∈ Ra,b,m(n) having at least one part ≡ b (mod m
and largest part ̸≡ a, b (mod m) with B > A (resp. A > B). Partitions π ∈ Rb,a,m(n) with
π1 ≡ a or π1 ≡ b (mod m) not satisfying condition (∗) (resp. satisfying condition (∗)) have
their image under ψ4 (resp. ψ

′
4) in the set of partitions π ∈ Rb,a,m(n) not satisfying condition

(∗) (resp. satisfying condition (∗)).
Then since each ψi is injective and their images are disjoint, Ψ = ψ1 ∪ ψ2 ∪ ψ3 ∪ ψ4 ∪ ψ′

4

is injective. □

5.4. Analogues of PED and POD Partitions. Another lens through which we may
consider parity in partitions is through PED and POD partitions. Let ped(n) (resp. pod(n))
denote the number of partitions of n where all even parts (resp. all odd parts) must be
distinct but odd parts (resp. even parts) have no restrictions. There have been a number of
developments in the occurrence and arithmetic properties of ped(n) and pod(n), for instance
see [4, 6, 7, 9, 10, 24]. We use a combinatorial approach to obtain an exact count of these
partitions in the fixed perimeter setting, which we will denote by red(n) and rod(n). We
further find that we can apply the injections developed in Section 5.1 to obtain similar results
to fixed perimeter parity bias in the context of fixed perimeter PED and POD partitions.

Theorem 5.7. For all n ≥ 1,

red(n) =
n∑

α=1

n−α∑
b=0

(
⌊α−1

2
⌋

b

)(
⌈α
2
⌉+ n− α− b− 1

n− α− b

)
and

rod(n) =
n∑

α=1

n−α∑
b=0

(
⌈α−1

2
⌉

b

)(
⌊α
2
⌋+ n− α− b− 1

n− α− b

)
.

For all n ̸= 1, 3,

red(n) > rod(n).(56)

Proof. The index α tracks the size of the largest part, and the index b tracks the number of
distinct even (resp. distinct odd) parts smaller than α that are chosen. Once α is fixed, we
choose the remaining n − α parts by first selecting the (possibly zero) distinct even (resp.
distinct odd) parts, and then selecting the (possibly zero) remaining n− α− b unrestricted
odd (resp. unrestricted even) parts.

There are ⌊α−1
2
⌋ choices of distinct evens smaller than α and ⌈α−1

2
⌉ choices of distinct odds

smaller than α, giving us the first binomial coefficient in each equation. Likewise, there are
⌈α
2
⌉ odds smaller than or equal to α and ⌊α

2
⌋ evens. Using a stars and bars counting method,

we obtain the second binomial coefficient in each equation to count the parts not required
to be distinct. The desired inequality now follows by taking k = 0 in Theorem 5.10. □

We also find that the terms in the expansions of red(n) and rod(n) given by Theorem
5.7 are each enumerated recursively by a Tribonacci pattern, which we shall prove using
comparison of generating functions. Such a recursion comes as an interesting contrast to
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Straub’s finding [26] that the number of partitions of perimeter n into distinct parts is given
by the Fibonacci number Fn. To show this we first require the following lemma.

Lemma 5.8. The tribonacci sequence {Tn}∞n=1 with initial values T1, T2, T3 has the generating
function

∞∑
n=1

Tnq
n =

T1q + (T2 − T1)q
2 + (T3 − T2 − T1)q

3

1− q − q2 − q3
.

Proof. We begin by noting that {Tn}∞n=1 is defined as Tn = Tn−1 + Tn−2 + Tn−3 with initial
values T1, T2, T3. Now, consider the following.

(1−q−q2−q3)
∞∑
n=1

Tnq
n = T1q+(T2−T1)q2+(T3−T2−T1)q3+

∞∑
n=4

(Tn−Tn−1−Tn−2−Tn−3)

= T1q + (T2 − T1)q
2 + (T3 − T2 − T1)q

3.

Thus,

∞∑
n=1

Tnq
n =

T1q + (T2 − T1)q
2 + (T3 − T2 − T1)q

3

1− q − q2 − q3
.

□

We shall now prove a recursion for red(n) and rod(n) using the above lemma.

Theorem 5.9. For n ≥ 1,

red(n+ 3) = red(n) + red(n+ 1) + red(n+ 2),

rod(n+ 3) = rod(n) + rod(n+ 1) + rod(n+ 2).

Furthermore, red(n) is enumerated by the Tribonacci sequence {Tn}∞n=1 with initial values
T1 = 1, T2 = 2, T3 = 3. Similarly, rod(n) is enumerated by the Tribonacci sequence {T ′

n}∞n=1

with initial values T ′
1 = 1, T ′

2 = 1, T ′
3 = 3.

Proof. We shall first derive generating functions for red(n) and rod(n), beginning with red(n).
We shall construct our generating functions using the profile of a partition, a process which
has been described in Section 4.

As we are required to have even parts occuring at most once, we shall use odd parts as
our baseline. Between two odd part sizes, we can either move ENE to include a distinct
even part, or more EE to skip to the next odd part size. At a given odd part, we also allow
for a move N , indicating an inclusion of such a part. So, beginning at an odd part, we must
choose from N,EE,ENE. After any of these are chosen, our part size remains odd, so we
repeat this process. This can occur j times for j ∈ N0, giving us the generating function
block

1 + (yq + x2q2 + x2yq3) + (yq + x2q2 + x2yq3)2 + · · · = 1

1− (yq + x2q2 + x2yq3)
.
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Now, we must consider our initial and final moves. We begin with a single move E as
required by the profile. Since a single move E brings us to a part of size 1, which is odd, we
can then move to the process described above. This is given by the form (xq).
To finish, we can either end on an odd part or end on a distinct even part. From a given

odd part size in the body, these take the form N and EN respectively. This is given by
the form (y + xyq). Note that we omit a q from both of the final options, ensuring that
n = α + λ− 1. Now, putting all of this together, we are left with the form

∞∑
α=0

∞∑
λ=0

red(α, λ, n)x
αyλqn =

xq(y + xyq)

1− (yq + x2q2 + x2yq3)
.

Now, by taking x = y = 1, we have that

∞∑
n=1

red(n)q
n =

q + q2

1− q − q2 − q3
.

By Lemma 5.8, it is evident that this is also the generating function for the Tribonacci
sequence {Tn}∞n=1 with T1 = 1, T2 = 2, T3 = 3. Thus, red(n) = Tn, and in particular we have
that

red(n+ 3) = red(n) + red(n+ 1) + red(n+ 2).

Now, deriving the generating function for rod(n) is similar, except that we shall use
even parts as our baseline. From a given even part size, we once again must choose from
N,EE,ENE, giving us the body of

1

1− (yq + x2q2 + x2yq3)
.

Here, however, our initial and final moves become more complicated. After our required
move E our part is odd, and we would like to move to an even part to begin the process
described above. To do so, we must either take a step E or include a distinct odd part of
size 1 given by NE. Together, our initial moves take the form (x2q2 + x2yq2).
To finish, we once again can end on the current even part or end on the distinct next odd

part, giving us N and EN respectively. This is given by the form (y+ xyq), omitting a q as
done previously. Together, we have

(x2q2 + x2yq2)(y + xyq)

1− (yq + x2q2 + x2yq3)
.

This function, however, does not include the single partition of perimeter 1 consisting of xyq,
so we must append this. Our final function becomes

∞∑
α=0

∞∑
λ=0

rod(α, λ, n)x
αyλqn =

(x2q2 + x2yq2)(y + xyq)

1− (yq + x2q2 + x2yq3)
+ xyq

=
xyq(1 + (x− y)q + xyq2)

1− (yq + x2q2 + x2yq3)
.
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After taking x = y = 1, we have

∞∑
n=1

rod(n)q
n =

q + q3

1− q − q2 − q3
.

Once again by Lemma 5.8, it is evident that this is the generating function for the Tribonacci
sequence {T ′

n}∞n=1 with T ′
1 = 1, T ′

2 = 1, T ′
3 = 3. Thus, rod(n) = T ′

n, and in particular we have
that

rod(n+ 3) = rod(n) + rod(n+ 1) + rod(n+ 2).

□

Theorem 5.9 gives us further intuition for the result of (56) in Theorem 5.7, as we have
that

red(2) = T2 > T ′
2 = rod(2),

which implies that for n = 2 and all n ≥ 4, it must be that red(n) > rod(n). We may now
consider, as in Section 5.1, how this inequality is impacted when we impose either restriction
of allowed parts or restriction of smallest part. An alternative proof of Theorem 5.7 is given
by taking k = 0 in the first inequality below.

Theorem 5.10. Let k ∈ N0. For all n = 2k + 2 and n ≥ 2k + 4,

r
{S2k}
ed (n) > r

{S2k}
od (n),

and for all n = 2k + 3 and n ≥ 2k + 5,

r
{S2k+1}
ed (n) < r

{S2k+1}
od (n).

Proof. The result is clear for the two partitions allowed each by the restrictions when n =
2k + 2 and when n = 2k + 3, so we need only consider n ≥ 2k + 4 for the first inequality
and n ≥ 2k + 3 for the second. The result follows from applying injections Ψ1 and Ψ2,
respectively, from Theorem 5.1. We remark that in this context, the strict inequality follows

from the fact that partitions π ∈ R{S2k}
ed (n) (resp. π ∈ R{S2k+1}

od (n)) having smallest part of

size 2k + 2 (resp. 2k + 3) are not in the image of R{S2k}
od (n) under Ψ1 (resp. the image of

R{S2k+1}
ed (n) under Ψ2). □

Similarly, we have the following analogue of Theorem 5.2.

Theorem 5.11. For ℓ ≥ 2 and for all n ≥ ℓ,

r
{Sℓ−2∪ℓ}
ed (n) < r

{Sℓ−2∪ℓ}
od (n)

for ℓ odd, and

r
{Sℓ−2∪ℓ}
od (n) < r

{Sℓ−2∪ℓ}
ed (n)

for ℓ even.
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Proof. The result is clear for n = ℓ, ℓ+ 1 and follows for n ≥ ℓ+ 2 from applying injections
Ψa and Ψb, respectively, from Theorem 5.2. In this context, the strict inequality follows from

the fact that partitions π ∈ R{Sℓ−2∪ℓ}
od (n) (resp. π ∈ R{Sℓ−2∪ℓ}

ed (n)) having a part of size ℓ− 1

occurring two or more times are not in the image of R{Sℓ−2∪ℓ}
ed (n) under Ψa (resp. the image

of R{Sℓ−2∪ℓ}
od (n) under Ψb). □

For 1 ≤ a < b ≤ m, let rpam(n) and rpbm(n), respectively, denote the number of partitions
of perimeter n such that any parts ≡ a (mod m) (resp. ≡ b (mod m)) must be distinct
and all other parts are unrestricted. We may observe that rod(n) and red(n) are instances of
rpam(n) and rpbm(n) given by a = 1, b = 2,m = 2. We now present the following analogue of
Theorem 5.6.

Theorem 5.12. For n ≥ 1,

rpbm(n) ≥ rpam(n).

Proof. Observe that partitions containing no parts congruent to either a or b belong in both
Rpbm(n) and Rpam(n), thus we may assume for comparison purposes that any partition we
consider counted by either rpam(n) or rpbm(n) has at least one part congruent to either a or
b. The result then follows from applying the injection Ψ from Theorem 5.6. □

6. Concluding Remarks

It is interesting to continue the exploration of analogues of regular partition results in
the fixed perimeter context, a process which we have begun in this paper. In particular, it
would be interesting to address Conjecture 4.1 in determining the existence of an N for with
FDj,k(n) ≥ FOj,k(n) when n ≥ N .

We also think it would be meaningful to further extend the fixed perimeter analogue of
Andrews’ S-T Theorem given in Theorem 1.5 by loosening the requirement of inequality in
the smaller elements of S and T , as stated in Conjecture 4.8.

In Section 4.4 and Conjecture 4.9, we detail initial steps in proving an analogue of Kang
and Kim’s result, stated in Theorem 2.2, in the fixed perimeter setting.

In Section 5.3 and Conjecture 5.4, we also provide initial steps in proving a fixed perimeter
analogue of Banerjee et al.’s parity bias result for partitions into distinct parts, given in
Theorem 2.4. Both of the previous two conjectures appear to hold from computational
evidence, and it would be interesting to complete the proofs of each.

Finally, it could be illuminating to develop a combinatorial proof of Lemma 3.3 in the
style of Ballantine and Welch [8, Thm. 4].
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