
Authors: Daniel McDonald, Yoshiki Vazquez Baeza, David Koslicki, Jason McClelland, Nicolai 1
Reeve, Zhenjiang Xu, Antonio Gonzalez, Rob Knight 2
 3
Title: Striped UniFrac: enabling microbiome analysis at unprecedented scale. 4
 5
Abstract: UniFrac is synonymous with microbiome research, yet it no longer scales to large 6
datasets. We propose a new algorithm, Striped UniFrac, which produces identical results, 7
reduces space and time complexities by >10x and exhibits near linear parallel scaling. We 8
highlight it by computing UniFrac on 113,721 samples in 48 hours using 256 CPUs. A BSD-9
licensed implementation is available that produces a C shared library linkable by any 10
programming language. 11
 12
[main text: presently 1389 words] 13
 14
The study of the microbiome has rapidly expanded, largely because of the insight afforded by 15
UniFrac 1. UniFrac is a phylogenetic measure of beta-diversity that assesses differences 16
between pairs of microbiome profiles, and provides the method underlying some of the field’s 17
most iconic insights 2–4. UniFrac is central to microbial community studies because it accounts 18
for evolutionary relationships between microbes present within a sample, whereas other 19
distance metrics such as Euclidean distance, Bray-Curtis, and Jaccard make the unrealistic 20
implicit assumption that all organisms are equally related (see 5 for more detail), leading to 21
statistical artifacts on the resulting sparse data matrices. 22
 23
Microbiome studies have recently transitioned from experimental designs with a few dozen 24
samples to designs spanning tens of thousands of samples. Large-scale studies, such as the 25
Earth Microbiome Project 6, afford the statistical crucial for untangling the many factors that 26
influence microbial community composition. Unfortunately, these large studies make prohibitive 27
demands on our algorithms and data structures. In the summer of 2015, we set out to apply 28
UniFrac to the Earth Microbiome Project, a dataset spanning over 25,000 samples. We 29
discovered that Fast UniFrac 7, irrespective of implementation, could not process this dataset 30
even with months running on specialized hardware. Here we describe a novel algorithm with a 31
shared library implementation usable by any programming language that can process the EMP 32
dataset on a laptop in <24 hours. 33
 34
Five important advances were made in the design of Striped UniFrac. First was to reduce the 35
average case space requirement from by performing a postorder aggregation of the sample 36
proportions to compute UniFrac at each internal node (fig. 1A; proof in supplemental text), 37
similar to EMDUniFrac 8, avoiding the necessity of a dense matrix representation of sample 38
proportions at all vertices. The second advance was to orient the pairwise sample comparisons 39
along diagonals, or stripes, of the resulting distance matrix. This transform allows for substantial 40
vectorization through single instruction multiple data (SIMD) operations, because groups of 41
pairwise distances can be computed in a single instruction (fig. 1BC). Memory locality is also 42
preserved by representing proportions and stripes as contiguous C-style arrays. The third 43
advance was to allow independent execution of distance matrix stripes allowing considerable 44

task-level parallelism (either by threads or processes). Fourth, in a bifurcating tree, 45
approximately 50% of the vertices are represented by the tips; we reasoned that collapsing the 46
phylogeny slightly by disregarding UniFrac computations at the tips would yield a highly 47
correlated result (e.g., similar to the minimal differences caused by moving from 99% to 97% 48
OTUs) (fig. 1D). This heuristic is optional. Last, we represent the phylogeny using balanced 49
parentheses 9, a succinct data structure that supports rapid tree reductions and traversals, and 50
has minimal memory requirements. 51
 52

 53
Figure 1. Algorithm highlights. (A) A depiction of the fourth vertex evaluated in a postorder 54

traversal and the resulting sample proportions (circled). This vertex is the parent of tips “2” and 55
“3”. The sample proportions for this vertex represent the aggregate (sum) of the sample 56

proportions of the features which descend. The memory for features “2” and “3” is no longer 57
needed, and can be freed. (B) A schematic of the two stripes in a four sample logical distance 58

matrix; the labels above the stripes denote the pairwise comparison represented (e.g., “AB” 59
indicates the distance between samples “A” and “B”). (C) A nodes sample proportions are 60

embedded, duplicating the proportion information. This duplication allows the sample 61
proportions to be slid along the embedded proportions, allowing comparison of linear blocks of 62
memory for all pairwise combinations of samples. (D) Mantel tests (Pearson) between Strided 63

State UniFrac in exact mode, which produces identical results to UniFrac vs. fast mode in which 64
the UniFrac distances are not computed at the tips of the tree during traversal. Each data point 65
represents 10 random subsets of the Earth Microbiome Project Deblur 90nt dataset, with the 66

median R^2 value depicted. Error bars are 95% CI. 67
 68
In order to benchmark this new algorithm, we randomly sampled the Earth Microbiome Project 69
Deblur 90 nucleotide dataset at increasing numbers of samples with ten iterations at a given 70

number of samples. For each sOTU table, the EMP phylogeny was sheared to only the features 71
contained to avoid benchmarking different phylogenetic data structures. For each table and tree 72
pair, we computed unweighted UniFrac, weighted normalized UniFrac and weighted 73
unnormalized UniFrac with Striped UniFrac, Fast UniFrac as used by QIIME1 10 (the reference 74
implementation as implemented in PyCogent 11), Fast UniFrac in QIIME2 (a Cython’d 75
implementation in scikit-bio, and Fast UniFrac in phyloseq (a independent R implementation)12. 76
For each execution, runtime and space were tracked using GNU Time (fig. 2AB). To explore 77
parallelism, we executed Striped UniFrac on the full EMP table (25,145 samples) using shared 78
computational nodes with each process using two threads, and tracked the per process time 79
and memory (fig. 2C) for walltime distributions, (fig. S1) for memory distributions. 80
 81
We then obtained 120,790 Illumina 16S rRNA V4 samples processed by Deblur 13 from Qiita 82
(Qiita study IDs, sample counts and study titles in table S1). The 5,522,523 fragments were 83
inserted into Greengenes 14 13_8 99% tree using SEPP 15,16. Rarefaction to 500 sequences per 84
sample reduced the total number of samples to 113,721. By distributing the computation over 85
256 processors, we computed unweighted UniFrac in under 48 hours walltime, using 7,977 86
CPU hours with a peak resident memory during the distributed computation at 1.3GB. We then 87
performed Principal Coordinates Analysis using centered FSVD 17 on the resulting distances, 88
and visualized them through EMPeror 18 (fig. 2D). This level of integration shows the dramatic 89
range of diversity associated with the American Gut Project (in press), which includes samples 90
from only a single host type (humans) suggesting a high degree of “unique” microbiomes remain 91
to be found by deeper sampling in other host types. 92
 93

 94
Figure 2. Space and time complexities. (A-B) Time and space comparisons between phyloseq, 95
QIIME v1.9.1, scikit-bio, Striped UniFrac in exact mode, and Striped UniFrac in fast mode. Each 96

datapoint represents 10 random subsets of the Earth Microbiome Project 90nt dataset at 97
increasing numbers of samples. All methods were run single threaded on non-shared compute 98

nodes which were not running other compute tasks. A job was killed if it exceeded 24 hours 99
walltime or 256GB of memory (system max). (C) Walltime distributions of independent 100

processes operating on the full Earth Microbiome Project dataset (over 25,000 samples) 101
executing on shared compute nodes. An individual partition represents a single independent 102

process, and each process was run with two threads; 32 partitions indicates 32 processes using 103
two threads each. A higher partition count means each individual process is doing less work. 104
Given sufficient available resources, the maximum for a distribution represents a near upper 105

bound on walltime. (D) An ordination plot of unweighted UniFrac distances over 113,721 106
samples sourced from Qiita. (E) Unweighted UniFrac applied to the metagenomic data from the 107

integrated Human Microbiome Project data using the taxonomy as the tree. UC is Ulcerative 108
Colitis, CD is Crohn’s Disease and nonIBD is non-Inflammatory Bowel Disease. 109

 110
For extensibility, we implemented the algorithm in C++ under the BSD open source license, and 111
provide a shared C library with examples of interfacing to it using C and R, and a 112
comprehensive Python using the C-API (https://github.com/biocore/unifrac). In addition, we 113
implemented kernels to support other variants of UniFrac such as Generalized UniFrac 19 and 114
Variance Adjusted UniFrac 20. To facilitate broader adoption, a generalized x86-64 build of 115
library is now part of QIIME2’s “q2-diversity” plugin, the same plugin used by Qiita. 116
 117
The design of Striped UniFrac allows UniFrac to scale well into the future, with demonstrated 118
operational capability of >100,000 samples. Its parallel model and empirical scaling suggests 119
application to datasets an order of magnitude larger than the EMP, and already benefits users 120
operating on studies of “merely” thousands of samples such as the Integrated Human 121
Microbiome Project dataset, in which UniFrac can be computed in 0.5 seconds on a laptop, 122
allowing interactive analyses rather than batch-mode (fig. 2E). These reductions are critical for 123
methods assay variability introduced by rarefaction, such as jackknifed beta diversity. Similarly, 124
these reductions continue the democratization of analysis, bringing projects at the scale of the 125
Earth Microbiome Project from a supercomputer to your laptop. 126
 127
Methods 128
Postorder traversal memory reduction 129
At initialization, a stack is created to store sample proportion vectors of type double and length 130
N where N is the number of samples. The vectors in the stack are used to represent sample 131
proportions across the tree. The stack is used to avoid reallocation of sample proportion vectors 132
over the tree; allocated memory is reused after a vertex has been evaluated with more memory 133
allocated to the stack only as needed. The stack is combined with a hash table indexed by a 134
unique node identifier so specific sample proportions can be retrieved if presently stored. 135
 136
Over a postorder traversal of the input tree, if the vertex examined does not have children (i.e., 137
is a leaf), then a proportion vector is popped from the stack (allocating memory if the stack is 138
empty), and the proportions in this vector are set to the sample proportions for the observed 139
feature from the input BIOM table. An entry is then added into a hash table mapping the index of 140
the node to the address of the vector. If the vertex evaluated instead has children (i.e., is not a 141
leaf), then a vector is popped from the stack (allocating memory if the stack is empty), the 142
sample proportions for each child of the vertex are obtained from the hash table, and the 143
sample proportions of the children are summed to create the proportion vector for the vertex 144

under evaluation. The sample proportions of the children are then pushed on to the onto the 145
stack, and the hash table entry for their vertex identifiers is erased. Because the traversal is 146
performed in postorder, the children of a vertex are always evaluated first, which ensures the 147
sample proportions of the children are present in the hash table. 148
 149
Stripe aggregation 150
A matrix of size K x N, where K is the number of stripes and N is the number of samples is 151
allocated. The number of stripes for a full distance matrix (N + 1) / 2, resulting in an allocation of 152
((N + 1) / 2) * N) elements. For an odd number of samples, the number of elements in this 153
matrix is exactly the number of elements in the upper triangle of the distance matrix. For an 154
even number of samples, (N / 2) space is replicated. The elements of these stripes span both 155
the upper and lower triangles of the logical distance matrix. 156
 157
For each vertex, the sample proportions P for the vertex are embedded into a vector E of length 158
2N, such that the first N elements are a copy of the sample proportions, and the N to 2N 159
elements are a copy of the sample proportions. This embedding allows for bulk pairwise 160
comparisons between samples by allowing the execution of a distance kernel D (e.g., 161
unweighted UniFrac) into a single stripe k with D(P, E[k:k+N]). This approach results in the 162
comparison of two linear and C contiguous blocks of memory of length N, storing into a linear 163
and C contiguous block of memory of length N. 164
 165
Distance kernels and parallelism 166
Each individual distance metric (e.g., unweighted UniFrac, Generalized UniFrac, etc) is 167
expressed as a compute kernel. These compute kernels operate per vertex during the tree 168
traversal, compute a metric at every node within the tree, adding the computed distances into 169
the stripes. Profiling suggests the vast bulk (>99%) of the computational time is expended in 170
these kernels. 171
 172
The compute of any diagonal (stripe) in the resulting distance matrix is independent of any other 173
diagonal. This property allows the computation to be expressed as a map-reduce problem, 174
where we map stripe sets to processing engines, and reduce by consolidating the stripes into a 175
logical distance matrix or condensed form matrix. 176
 177
Data sets 178
The full Deblur 90nt table rarefied at 1000 sequences per sample, and corresponding 179
phylogenetic tree were obtained from the Earth Microbiome Project. Sets of samples were 180
randomly pulled from this table at from 1000 to 10000 samples in steps of 1000. At each sample 181
size, 10 iterations were performed producing 10 tables. For a given set of samples, the subset 182
of the tree vertices and edges ancestral to the features in a sample set were retained, all other 183
vertices and edges were pruned out. Any single descendant nodes were collapsed, aggregating 184
the branch length toward the root. 185
 186
The iHMP metagenomic data were obtained from the iHMP Qiita portal (https://ihmp.ucsd.edu), 187
study 10001. Preparation ID 5 of the metagenomic data were downloaded as a BIOM table. 188

Only observations at the species level were retained. A tree was constructed using the lineage 189
information embedded in the IDs. Unweighted UniFrac was computed on this table using the 190
Python API for Striped UniFrac using 4 threads. 191
 192
Pseudocode representation of the algorithm with unweighted UniFrac 193
function unweighted(embedded_props, stripes, stripe_totals) 194
 n_samples = number_of_columns(stripes) 195
 for stripe_index in stripes 196
 start = stripe_index 197
 end = start + n_samples 198
 stripe_props = embedded_props[start:end] 199
 200
 unique = embedded_props[:n_samples] XOR stripe_props 201
 total = embedded_props[:n_samples] OR stripe_props 202
 203
 # inplace operation 204
 stripes[stripe_index] += unique 205
 stripe_totals[stripe_index] += total 206
 207
 208
function initialize_child_proportions() 209
 stack_of_proportions = empty() 210
 hashmap_of_proportions = empty() 211
 return (stack_of_proportions, hashmap_of_proportions) 212
 213
 214
function merge_child_proportions(child_props, tree, node) 215
 node_props = empty() 216
 for child in children(tree, node) 217
 child_prop = child_props.hashmap_of_props.pop(child) 218
 node_props += child_prop 219
 child_props.stack_of_props.push(child_prop) 220
 return node_props 221
 222
 223
function associate_node_props(child_props, node, props) 224
 child_props.hashmap_of_props[node] = props 225
 226
 227
function get_prop_vector(child_props) 228
 if child_props.stack_of_props.empty() 229
 return empty_vector_of_length_number_of_samples 230
 else 231
 return child_props.stack_of_props.pop() 232
 233

 234
function embed_props(vector) 235
 embedded = zeros(length(vector) * 2) 236
 embedded[:length(vector)] = vector 237
 embedded[length(vector):] = vector 238
 return embedded 239
 240
 241
function get_and_set_leaf_vector(table, node, props) 242
 for index, value in getleaf(table, node) 243
 props[index] = value 244
 245
 246
function deconvolute(stripes) 247
 n_samples = length(stripes[0]) 248
 matrix = zeros(n_samples, n_samples) 249
 250
 for index, stripe in enumerate(stripes) 251
 k = 0 252
 row = 0 253
 col = index + 1 254
 while row < n_samples 255
 if(col < n_samples): 256
 matrix[row, col] = stripe[k] 257
 matrix[col, row] = stripe[k] 258
 else 259
 matrix[col % n_samples][row] = stripe[k] 260
 matrix[row][col % n_samples] = stripe[k] 261
 row = row + 1 262
 col = col + 1 263
 k = k + 1 264
 return matrix 265
 266
 267
function unifrac(table, tree, kernel) 268
 n_samples = number_of_samples(table) 269
 n_stripes = ceil((n_samples^2 - n_samples) / 2) 270
 stripes = zeros(n_stripes, n_samples) 271
 stripe_totalss = zeros(n_stripes, n_samples) 272
 child_props = initialize_child_props() 273
 274
 for node in postorder(tree) 275
 if isleaf(node) 276
 props = get_prop_vector(child_props) 277
 get_and_set_leaf_vector(table, node, props) 278

 associate_node_props(child_props, node, props) 279
 else 280
 props = merge_child_props(child_props, tree, node) 281
 282
 embedded_props = embed_props(props) 283
 kernel(embedded_props, length(node), stripes, stripe_totals) 284
 285
 if kernel is normalized 286
 for stripe_index in stripes: 287
 unique = striped[stripe_index] 288
 total = stripe_totals[stripe_index] 289
 stripes[stripe_index] = unique / total 290
 291
 return deconvolute(stripes) 292
 293

1. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial 294

communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005). 295

2. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. 296

Science 339, 548–554 (2013). 297

3. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 298

486, 222–227 (2012). 299

4. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: 300

evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008). 301

5. Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect 302

biologically relevant patterns. Nat. Methods 7, 813–819 (2010). 303

6. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. 304

Nature 551, 457–463 (2017). 305

7. Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput 306

phylogenetic analyses of microbial communities including analysis of pyrosequencing and 307

PhyloChip data. ISME J. 4, 17–27 (2010). 308

8. McClelland, J. & Koslicki, D. EMDUniFrac: exact linear time computation of the UniFrac 309

metric and identification of differentially abundant organisms. J. Math. Biol. (2018). 310

doi:10.1007/s00285-018-1235-9 311

9. Cordova, J. & Navarro, G. Simple and efficient fully-functional succinct trees. Theor. 312

Comput. Sci. 656, 135–145 (2016). 313

10. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing 314

data. Nat. Methods 7, 335–336 (2010). 315

11. Knight, R. et al. PyCogent: a toolkit for making sense from sequence. Genome Biol. 8, 316

R171 (2007). 317

12. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis 318

and graphics of microbiome census data. PLoS One 8, e61217 (2013). 319

13. Amir, A. et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. 320

mSystems 2, (2017). 321

14. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological 322

and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012). 323

15. Mirarab, S., Nguyen, N. & Warnow, T. SEPP: SATé-enabled phylogenetic placement. Pac. 324

Symp. Biocomput. 247–258 (2012). 325

16. Janssen, S. et al. Phylogenetic Placement of Exact Amplicon Sequences Improves 326

Associations with Clinical Information. mSystems 3, e00021–18 (2018). 327

17. Halko, N., Martinsson, P., Shkolnisky, Y. & Tygert, M. An Algorithm for the Principal 328

Component Analysis of Large Data Sets. SIAM J. Sci. Comput. 33, 2580–2594 (2011). 329

18. Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing 330

high-throughput microbial community data. Gigascience 2, 16 (2013). 331

19. Chen, J. et al. Associating microbiome composition with environmental covariates using 332

generalized UniFrac distances. Bioinformatics 28, 2106–2113 (2012). 333

20. Chang, Q., Luan, Y. & Sun, F. Variance adjusted weighted UniFrac: a powerful beta 334

diversity measure for comparing communities based on phylogeny. BMC Bioinformatics 12, 335

118 (2011). 336

 337

Consider a rooted tree T with root ρ on n nodes as an n dimensional vector spaces over the

real numbers. Identify the subtrees of T with the nodes of T , that is subtree i is the subtree which

does not contain ρ formed by choosing node i as a root. The subtree corresponding to ρ is T .

Choose a basis {vi| 1 ≤ i ≤ n} for T such that vi is the indicator function for subtree i, that is

vi(j) = 1 for those nodes j in subtree i and zero otherwise. Label the n− 1 edges of T such that

edge ei is the unique edge adjacent to node i on a path from node i to the root ρ.

Let W be the n× n matrix whose rows correspond to the basis vectors vi scaled by the corre-

sponding edge weight l(ei). Consider probability distributions P and Q on T as column vectors,

ordered such that entry i corresponds to the root of subtree i.

Then

UniFrac(P,Q) = ‖W (P −Q)‖L1

.

Thius follows as we note that

‖W (P −Q)‖L1 =
n∑

i=1

n∑
j=1

l(ei)vi(j)|P (vj)−Q(vj)|

This summation is the discrete integral over T of the distributions P and Q with respect to measure

formed from the branch lengths of T . By [1] the value of this integral is equivalent to earth mover’s

distance between P and Q with respect to the tree T , and thus is equal to the UniFrac distance

between P and Q.

References

[1] Evans SN, Matsen FA. The phylogenetic Kantorovic Rubinstein metric for environmental se-

quence samples. Journal of the Royal Statistical Society Series B, Statistical methodology. 2012

1

