
Authors: Daniel McDonald, Yoshiki Vazquez Baeza, David Koslicki, Jason McClelland, Nicolai 1 
Reeve, Zhenjiang Xu, Antonio Gonzalez, Rob Knight  2 
 3 
Title: Striped UniFrac: enabling microbiome analysis at unprecedented scale.  4 
 5 
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 14 
The study of the microbiome has rapidly expanded, largely because of the insight afforded by 15 
UniFrac 1. UniFrac is a phylogenetic measure of beta-diversity that assesses differences 16 
between pairs of microbiome profiles, and provides the method underlying some of the field’s 17 
most iconic insights 2–4. UniFrac is central to microbial community studies because it accounts 18 
for evolutionary relationships between microbes present within a sample, whereas other 19 
distance metrics such as Euclidean distance, Bray-Curtis, and Jaccard make the unrealistic 20 
implicit assumption that all organisms are equally related (see 5 for more detail), leading to 21 
statistical artifacts on the resulting sparse data matrices.  22 
  23 
Microbiome studies have recently transitioned from experimental designs with a few dozen 24 
samples to designs spanning tens of thousands of samples. Large-scale studies, such as the 25 
Earth Microbiome Project 6, afford the statistical crucial for untangling the many factors that 26 
influence microbial community composition. Unfortunately, these large studies make prohibitive 27 
demands on our algorithms and data structures. In the summer of 2015, we set out to apply 28 
UniFrac to the Earth Microbiome Project, a dataset spanning over 25,000 samples. We 29 
discovered that Fast UniFrac 7, irrespective of implementation, could not process this dataset 30 
even with months running on specialized hardware. Here we describe a novel algorithm with a 31 
shared library implementation usable by any programming language that can process the EMP 32 
dataset on a laptop in <24 hours.  33 
 34 
Five important advances were made in the design of Striped UniFrac. First was to reduce the 35 
average case space requirement from by performing a postorder aggregation of the sample 36 
proportions to compute UniFrac at each internal node (fig. 1A; proof in supplemental text), 37 
similar to EMDUniFrac 8, avoiding the necessity of a dense matrix representation of sample 38 
proportions at all vertices. The second advance was to orient the pairwise sample comparisons 39 
along diagonals, or stripes, of the resulting distance matrix. This transform allows for substantial 40 
vectorization through single instruction multiple data (SIMD) operations, because groups of 41 
pairwise distances can be computed in a single instruction (fig. 1BC). Memory locality is also 42 
preserved by representing proportions and stripes as contiguous C-style arrays. The third 43 
advance was to allow independent execution of distance matrix stripes allowing considerable 44 



task-level parallelism (either by threads or processes). Fourth, in a bifurcating tree, 45 
approximately 50% of the vertices are represented by the tips; we reasoned that collapsing the 46 
phylogeny slightly by disregarding UniFrac computations at the tips would yield a highly 47 
correlated result (e.g., similar to the minimal differences caused by moving from 99% to 97% 48 
OTUs) (fig. 1D). This heuristic is optional. Last, we represent the phylogeny using balanced 49 
parentheses 9, a succinct data structure that supports rapid tree reductions and traversals, and 50 
has minimal memory requirements. 51 
 52 

 53 
Figure 1. Algorithm highlights. (A) A depiction of the fourth vertex evaluated in a postorder 54 

traversal and the resulting sample proportions (circled). This vertex is the parent of tips “2” and 55 
“3”. The sample proportions for this vertex represent the aggregate (sum) of the sample 56 

proportions of the features which descend. The memory for features “2” and “3” is no longer 57 
needed, and can be freed. (B) A schematic of the two stripes in a four sample logical distance 58 

matrix; the labels above the stripes denote the pairwise comparison represented (e.g., “AB” 59 
indicates the distance between samples “A” and “B”). (C) A nodes sample proportions are 60 

embedded, duplicating the proportion information. This duplication allows the sample 61 
proportions to be slid along the embedded proportions, allowing comparison of linear blocks of 62 
memory for all pairwise combinations of samples. (D) Mantel tests (Pearson) between Strided 63 

State UniFrac in exact mode, which produces identical results to UniFrac vs. fast mode in which 64 
the UniFrac distances are not computed at the tips of the tree during traversal. Each data point 65 
represents 10 random subsets of the Earth Microbiome Project Deblur 90nt dataset, with the 66 

median R^2 value depicted. Error bars are 95% CI. 67 
 68 
In order to benchmark this new algorithm, we randomly sampled the Earth Microbiome Project 69 
Deblur 90 nucleotide dataset at increasing numbers of samples with ten iterations at a given 70 



number of samples. For each sOTU table, the EMP phylogeny was sheared to only the features 71 
contained to avoid benchmarking different phylogenetic data structures. For each table and tree 72 
pair, we computed unweighted UniFrac, weighted normalized UniFrac and weighted 73 
unnormalized UniFrac with Striped UniFrac, Fast UniFrac as used by QIIME1 10 (the reference 74 
implementation as implemented in PyCogent 11), Fast UniFrac in QIIME2 (a Cython’d 75 
implementation in scikit-bio, and Fast UniFrac in phyloseq (a independent R implementation)12. 76 
For each execution, runtime and space were tracked using GNU Time (fig. 2AB). To explore 77 
parallelism, we executed Striped UniFrac on the full EMP table (25,145 samples) using shared 78 
computational nodes with each process using two threads, and tracked the per process time 79 
and memory (fig. 2C) for walltime distributions, (fig. S1) for memory distributions.  80 
 81 
We then obtained 120,790 Illumina 16S rRNA V4 samples processed by Deblur 13 from Qiita 82 
(Qiita study IDs, sample counts and study titles in table S1). The 5,522,523 fragments were 83 
inserted into Greengenes 14 13_8 99% tree using SEPP 15,16. Rarefaction to 500 sequences per 84 
sample reduced the total number of samples to 113,721. By distributing the computation over 85 
256 processors, we computed unweighted UniFrac in under 48 hours walltime, using 7,977 86 
CPU hours with a peak resident memory during the distributed computation at 1.3GB. We then 87 
performed Principal Coordinates Analysis using centered FSVD 17 on the resulting distances, 88 
and visualized them through EMPeror 18 (fig. 2D). This level of integration shows the dramatic 89 
range of diversity associated with the American Gut Project (in press), which includes samples 90 
from only a single host type (humans) suggesting a high degree of “unique” microbiomes remain 91 
to be found by deeper sampling in other host types. 92 
     93 

 94 
Figure 2. Space and time complexities. (A-B) Time and space comparisons between phyloseq, 95 
QIIME v1.9.1, scikit-bio, Striped UniFrac in exact mode, and Striped UniFrac in fast mode. Each 96 

datapoint represents 10 random subsets of the Earth Microbiome Project 90nt dataset at 97 
increasing numbers of samples. All methods were run single threaded on non-shared compute 98 

nodes which were not running other compute tasks. A job was killed if it exceeded 24 hours 99 
walltime or 256GB of memory (system max). (C) Walltime distributions of independent 100 



processes operating on the full Earth Microbiome Project dataset (over 25,000 samples) 101 
executing on shared compute nodes. An individual partition represents a single independent 102 

process, and each process was run with two threads; 32 partitions indicates 32 processes using 103 
two threads each. A higher partition count means each individual process is doing less work. 104 
Given sufficient available resources, the maximum for a distribution represents a near upper 105 

bound on walltime. (D) An ordination plot of unweighted UniFrac distances over 113,721 106 
samples sourced from Qiita. (E) Unweighted UniFrac applied to the metagenomic data from the 107 

integrated Human Microbiome Project data using the taxonomy as the tree. UC is Ulcerative 108 
Colitis, CD is Crohn’s Disease and nonIBD is non-Inflammatory Bowel Disease. 109 

 110 
For extensibility, we implemented the algorithm in C++ under the BSD open source license, and 111 
provide a shared C library with examples of interfacing to it using C and R, and a 112 
comprehensive Python using the C-API (https://github.com/biocore/unifrac). In addition, we 113 
implemented kernels to support other variants of UniFrac such as Generalized UniFrac 19 and 114 
Variance Adjusted UniFrac 20. To facilitate broader adoption, a generalized x86-64 build of 115 
library is now part of QIIME2’s “q2-diversity” plugin, the same plugin used by Qiita.  116 
 117 
The design of Striped UniFrac allows UniFrac to scale well into the future, with demonstrated 118 
operational capability of >100,000 samples. Its parallel model and empirical scaling suggests 119 
application to datasets an order of magnitude larger than the EMP, and already benefits users 120 
operating on studies of “merely” thousands of samples such as the Integrated Human 121 
Microbiome Project dataset, in which UniFrac can be computed in 0.5 seconds on a laptop, 122 
allowing interactive analyses rather than batch-mode (fig. 2E). These reductions are critical for 123 
methods assay variability introduced by rarefaction, such as jackknifed beta diversity. Similarly, 124 
these reductions continue the democratization of analysis, bringing projects at the scale of the 125 
Earth Microbiome Project from a supercomputer to your laptop.  126 
 127 
Methods 128 
Postorder traversal memory reduction 129 
At initialization, a stack is created to store sample proportion vectors of type double and length 130 
N where N is the number of samples. The vectors in the stack are used to represent sample 131 
proportions across the tree. The stack is used to avoid reallocation of sample proportion vectors 132 
over the tree; allocated memory is reused after a vertex has been evaluated with more memory 133 
allocated to the stack only as needed. The stack is combined with a hash table indexed by a 134 
unique node identifier so specific sample proportions can be retrieved if presently stored.  135 
 136 
Over a postorder traversal of the input tree, if the vertex examined does not have children (i.e., 137 
is a leaf), then a proportion vector is popped from the stack (allocating memory if the stack is 138 
empty), and the proportions in this vector are set to the sample proportions for the observed 139 
feature from the input BIOM table. An entry is then added into a hash table mapping the index of 140 
the node to the address of the vector. If the vertex evaluated instead has children (i.e., is not a 141 
leaf), then a vector is popped from the stack (allocating memory if the stack is empty), the 142 
sample proportions for each child of the vertex are obtained from the hash table, and the 143 
sample proportions of the children are summed to create the proportion vector for the vertex 144 



under evaluation. The sample proportions of the children are then pushed on to the onto the 145 
stack, and the hash table entry for their vertex identifiers is erased. Because the traversal is 146 
performed in postorder, the children of a vertex are always evaluated first, which ensures the 147 
sample proportions of the children are present in the hash table. 148 
 149 
Stripe aggregation 150 
A matrix of size K x N, where K is the number of stripes and N is the number of samples is 151 
allocated. The number of stripes for a full distance matrix (N + 1) / 2, resulting in an allocation of 152 
((N + 1) / 2) * N) elements. For an odd number of samples, the number of elements in this 153 
matrix is exactly the number of elements in the upper triangle of the distance matrix. For an 154 
even number of samples, (N / 2) space is replicated. The elements of these stripes span both 155 
the upper and lower triangles of the logical distance matrix. 156 
 157 
For each vertex, the sample proportions P for the vertex are embedded into a vector E of length 158 
2N, such that the first N elements are a copy of the sample proportions, and the N to 2N 159 
elements are a copy of the sample proportions. This embedding allows for bulk pairwise 160 
comparisons between samples by allowing the execution of a distance kernel D (e.g., 161 
unweighted UniFrac) into a single stripe k with D(P, E[k:k+N]). This approach results in the 162 
comparison of two linear and C contiguous blocks of memory of length N, storing into a linear 163 
and C contiguous block of memory of length N. 164 
 165 
Distance kernels and parallelism 166 
Each individual distance metric (e.g., unweighted UniFrac, Generalized UniFrac, etc) is 167 
expressed as a compute kernel. These compute kernels operate per vertex during the tree 168 
traversal, compute a metric at every node within the tree, adding the computed distances into 169 
the stripes. Profiling suggests the vast bulk (>99%) of the computational time is expended in 170 
these kernels.  171 
 172 
The compute of any diagonal (stripe) in the resulting distance matrix is independent of any other 173 
diagonal. This property allows the computation to be expressed as a map-reduce problem, 174 
where we map stripe sets to processing engines, and reduce by consolidating the stripes into a 175 
logical distance matrix or condensed form matrix.  176 
 177 
Data sets 178 
The full Deblur 90nt table rarefied at 1000 sequences per sample, and corresponding 179 
phylogenetic tree were obtained from the Earth Microbiome Project. Sets of samples were 180 
randomly pulled from this table at from 1000 to 10000 samples in steps of 1000. At each sample 181 
size, 10 iterations were performed producing 10 tables. For a given set of samples, the subset 182 
of the tree vertices and edges ancestral to the features in a sample set were retained, all other 183 
vertices and edges were pruned out. Any single descendant nodes were collapsed, aggregating 184 
the branch length toward the root. 185 
 186 
The iHMP metagenomic data were obtained from the iHMP Qiita portal (https://ihmp.ucsd.edu), 187 
study 10001. Preparation ID 5 of the metagenomic data were downloaded as a BIOM table. 188 



Only observations at the species level were retained. A tree was constructed using the lineage 189 
information embedded in the IDs. Unweighted UniFrac was computed on this table using the 190 
Python API for Striped UniFrac using 4 threads.  191 
 192 
Pseudocode representation of the algorithm with unweighted UniFrac 193 
function unweighted(embedded_props, stripes, stripe_totals) 194 
    n_samples = number_of_columns(stripes) 195 
    for stripe_index in stripes 196 
        start = stripe_index 197 
        end = start + n_samples  198 
        stripe_props = embedded_props[start:end] 199 
 200 
        unique = embedded_props[:n_samples] XOR stripe_props 201 
        total = embedded_props[:n_samples] OR stripe_props 202 
 203 
        # inplace operation 204 
        stripes[stripe_index] += unique 205 
        stripe_totals[stripe_index] += total 206 
 207 
 208 
function initialize_child_proportions() 209 
    stack_of_proportions = empty() 210 
    hashmap_of_proportions = empty() 211 
    return (stack_of_proportions, hashmap_of_proportions) 212 
 213 
 214 
function merge_child_proportions(child_props, tree, node) 215 
    node_props = empty() 216 
    for child in children(tree, node) 217 
        child_prop = child_props.hashmap_of_props.pop(child) 218 
        node_props += child_prop 219 
        child_props.stack_of_props.push(child_prop) 220 
    return node_props 221 
 222 
 223 
function associate_node_props(child_props, node, props) 224 
    child_props.hashmap_of_props[node] = props 225 
 226 
 227 
function get_prop_vector(child_props) 228 
    if child_props.stack_of_props.empty() 229 
        return empty_vector_of_length_number_of_samples 230 
    else 231 
        return child_props.stack_of_props.pop() 232 
 233 



 234 
function embed_props(vector) 235 
    embedded = zeros(length(vector) * 2) 236 
    embedded[:length(vector)] = vector 237 
    embedded[length(vector):] = vector 238 
    return embedded 239 
 240 
 241 
function get_and_set_leaf_vector(table, node, props) 242 
    for index, value in getleaf(table, node) 243 
        props[index] = value 244 
 245 
 246 
function deconvolute(stripes) 247 
    n_samples = length(stripes[0]) 248 
    matrix = zeros(n_samples, n_samples) 249 
     250 
    for index, stripe in enumerate(stripes) 251 
        k = 0 252 
        row = 0 253 
        col = index + 1 254 
        while row < n_samples 255 
            if(col < n_samples): 256 
                matrix[row, col] = stripe[k] 257 
                matrix[col, row] = stripe[k] 258 
            else 259 
                matrix[col % n_samples][row] = stripe[k] 260 
                matrix[row][col % n_samples] = stripe[k] 261 
            row = row + 1 262 
            col = col + 1 263 
            k = k + 1 264 
    return matrix 265 
    266 
 267 
function unifrac(table, tree, kernel) 268 
    n_samples = number_of_samples(table) 269 
    n_stripes = ceil((n_samples^2 - n_samples) / 2) 270 
    stripes = zeros(n_stripes, n_samples) 271 
    stripe_totalss = zeros(n_stripes, n_samples) 272 
    child_props = initialize_child_props() 273 
 274 
    for node in postorder(tree) 275 
        if isleaf(node) 276 
            props = get_prop_vector(child_props) 277 
            get_and_set_leaf_vector(table, node, props) 278 



            associate_node_props(child_props, node, props) 279 
        else 280 
            props = merge_child_props(child_props, tree, node) 281 
 282 
        embedded_props = embed_props(props) 283 
        kernel(embedded_props, length(node), stripes, stripe_totals) 284 
 285 
    if kernel is normalized 286 
        for stripe_index in stripes: 287 
            unique = striped[stripe_index] 288 
            total = stripe_totals[stripe_index]  289 
            stripes[stripe_index] = unique / total 290 
 291 
    return deconvolute(stripes) 292 
 293 
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Consider a rooted tree T with root ρ on n nodes as an n dimensional vector spaces over the

real numbers. Identify the subtrees of T with the nodes of T , that is subtree i is the subtree which

does not contain ρ formed by choosing node i as a root. The subtree corresponding to ρ is T .

Choose a basis {vi| 1 ≤ i ≤ n} for T such that vi is the indicator function for subtree i, that is

vi(j) = 1 for those nodes j in subtree i and zero otherwise. Label the n− 1 edges of T such that

edge ei is the unique edge adjacent to node i on a path from node i to the root ρ.

Let W be the n× n matrix whose rows correspond to the basis vectors vi scaled by the corre-

sponding edge weight l(ei). Consider probability distributions P and Q on T as column vectors,

ordered such that entry i corresponds to the root of subtree i.

Then

UniFrac(P,Q) = ‖W (P −Q)‖L1

.

Thius follows as we note that

‖W (P −Q)‖L1 =
n∑

i=1

n∑
j=1

l(ei)vi(j)|P (vj)−Q(vj)|

This summation is the discrete integral over T of the distributions P and Q with respect to measure

formed from the branch lengths of T . By [1] the value of this integral is equivalent to earth mover’s

distance between P and Q with respect to the tree T , and thus is equal to the UniFrac distance

between P and Q.
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