Using Geometric Reasoning to Teach Vector Calculus in Mathematics and Physics

Tevian Dray \& Corinne Manogue

OSU

Oregon State

Mathematics vs. Physics

Teaching Geometric Reasoning

Vector Calculus Bridge Project:

http://math.oregonstate.edu/bridge

- Differentials (Use what you know!)
- Multiple representations
- Symmetry (adapted bases, coordinates)
- Geometry (vectors, div, grad, curl)
- Online text (http://math.oregonstate.edu/BridgeBook)

Paradigms in Physics Project:

http://physics.oregonstate.edu/portfolioswiki

- Redesign of undergraduate physics major (18 new courses!)
- Active engagement ($300+$ documented activities!)

What are Functions?

Suppose the temperature on a rectangular slab of metal is given by

$$
T(x, y)=k\left(x^{2}+y^{2}\right)
$$

where k is a constant. What is $T(r, \theta)$?

$$
\begin{aligned}
& \text { A: } T(r, \theta)=k r^{2} \\
& \text { B: } T(r, \theta)=k\left(r^{2}+\theta^{2}\right)
\end{aligned}
$$

Dot Product

Write something you know about the dot product on your small whiteboard.

Projection:

$$
\begin{gathered}
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=|\overrightarrow{\mathbf{u}}||\overrightarrow{\mathbf{v}}| \cos \theta \\
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=u_{x} v_{x}+u_{y} v_{y}
\end{gathered}
$$

Dot Product

Projection:

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} & =|\overrightarrow{\mathbf{u}}||\overrightarrow{\mathbf{v}}| \cos \theta \\
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} & =u_{x} v_{x}+u_{y} v_{y}
\end{aligned}
$$

Law of Cosines:

$$
\begin{gathered}
(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}) \cdot(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}-2 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \\
|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}|^{2}=|\overrightarrow{\mathbf{u}}|^{2}+|\overrightarrow{\mathbf{v}}|^{2}-2|\overrightarrow{\mathbf{u}}||\overrightarrow{\mathbf{v}}| \cos \theta \\
{ }^{2} c^{2}=a^{2}+b^{2}-2 a b \cos \theta \prime \prime
\end{gathered}
$$

Dot Product

Projection:

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} & =|\overrightarrow{\mathbf{u}}||\overrightarrow{\mathbf{v}}| \cos \theta \\
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} & =u_{x} v_{x}+u_{y} v_{y}
\end{aligned}
$$

Addition Formulas:

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} & =\cos \alpha \hat{\mathbf{x}}+\sin \alpha \hat{\mathbf{y}} \\
\overrightarrow{\mathbf{v}} & =\cos \beta \hat{\mathbf{x}}+\sin \beta \hat{\mathbf{y}} \\
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} & =\cos (\alpha-\beta) \\
& =\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{aligned}
$$

Find the angle between the diagonal of a cube and the diagonal of one of its faces.

Algebra:

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} & =\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}} \\
\overrightarrow{\mathbf{v}} & =\hat{\mathbf{x}}+\hat{\mathbf{z}} \\
& \Longrightarrow \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=2
\end{aligned}
$$

Geometry:

$$
\begin{gathered}
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=|\overrightarrow{\mathbf{u}}||\overrightarrow{\mathbf{v}}| \cos \theta=\sqrt{3} \sqrt{2} \cos \theta \\
\therefore \cos \theta=\frac{2}{\sqrt{3} \sqrt{2}}=\sqrt{\frac{2}{3}} \\
\text { Need both! }
\end{gathered}
$$

Compare and Contrast

- On your medium whiteboards, construct a square grid of points, approximately 2 inches apart, at least 7×7.
- I will draw an origin and a vector $\overrightarrow{\mathbf{k}}$ on your grid.
- For every point on your grid, imagine drawing the position vector $\overrightarrow{\mathbf{r}}$ to that point; calculate $\mathbf{k} \cdot \overrightarrow{\mathbf{r}}$.
- Connect the points with equal values of $\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{r}}$.

Plane Wave Representations

Charge Density

- Please stand up.
- Each of you is a point charge.
- Make a linear charge density.

Flux

Write something you know about flux on your small whiteboard.

Flux Demo

Divergence: Geometric Definition

$$
\left.\frac{((\overrightarrow{\mathbf{F}} \cdot \hat{\mathbf{n}}) d x d y) d z}{d z}\right|_{\mathrm{top}}+\left.\frac{((\overrightarrow{\boldsymbol{F}} \cdot \hat{\mathbf{n}}) d x d y) d z}{d z}\right|_{\mathrm{bot}}=\frac{\partial F_{z}}{\partial z} d \tau
$$

Flux per unit volume Schey, div, grad, curl and all that, Norton

Divergence: Small Group Activity

Curvilinear Coordinates

Coordinate independence of definition

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}=r \hat{\mathbf{r}} \\
\vec{\nabla} \cdot \overrightarrow{\mathbf{F}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r F_{r}\right)+\frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi}+\frac{\partial F_{z}}{\partial z}
\end{gathered}
$$

Divergence and Gauss

Add a physics law:

Multiple Representations

Write something you know about the gradient on your small whiteboard.

- $\vec{\nabla} f=\frac{\partial f}{\partial x} \hat{\mathbf{x}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}+\ldots$
- The gradient points in the steepest direction.
- The magnitude of the gradient tells you how steep.
- The gradient is perpendicular to the level curves.

Suppose you are standing on a hill. You have a topographic map, which uses rectangular coordinates (x, y) measured in miles. Your global positioning system says your present location is at one of the points shown. Your guidebook tells you that the height h of the hill in feet above sea level is given by

$$
h=a-b x^{2}-c y^{2}
$$

where $a=5000 \mathrm{ft}, b=30 \frac{\mathrm{ft}}{\mathrm{mi}^{2}}$, and $c=10 \frac{\mathrm{ft}}{\mathrm{mi}^{2}}$.

The Hill

Stand up and close your eyes. Hold out your right arm in the direction of the gradient where you are standing.

Visualization

Infinitesimal Displacement

The Geometry of Gradient

Chain Rule:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Differentials:

$$
\begin{aligned}
d f & =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \\
& =\left(\frac{\partial f}{\partial x} \hat{\mathbf{x}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}\right) \cdot(d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}})
\end{aligned}
$$

Master Formula:

$$
d f=\vec{\nabla} f \cdot d \overrightarrow{\mathbf{r}}
$$

$$
\begin{gathered}
f=\text { const } \Longrightarrow d f=0 \Longrightarrow \vec{\nabla} f \perp d \overrightarrow{\mathbf{r}} \\
\frac{d f}{d s}=\vec{\nabla} f \cdot \frac{d \overrightarrow{\mathbf{r}}}{|d \overrightarrow{\mathbf{r}}|}
\end{gathered}
$$

The gradient points in the steepest direction

Vector Calculus

Vector calculus is about one coherent concept: Infinitesimal Displacement

SUMMARY

Geometry, geometry, geometry...

OSU

Oregon State

Tevian Dray \& Corinne A. Manogue
http://math.oregonstate.edu/bridge
http://physics.oregonstate.edu/portfolioswiki

