Calculus Meets

Electromagnetism and Thermodynamics: A Tale of Two Disciplines

Tevian Dray (\& Corinne Manogue)

OSU

 Oregon State

 Oregon State}

Introduction

Is there a difference between $\frac{x^{2}-4}{x-2}$ and $x+2 ?$

Mathematics and Physics are two disciplines separated by a common language!

Physicists are bilingual (but don't know it)

What are Functions?

Suppose the temperature on a rectangular slab of metal is given by

$$
T(x, y)=k\left(x^{2}+y^{2}\right)
$$

where k is a constant. What is $T(r, \theta)$?
Share your answer with your neighbor(s).

$$
\begin{aligned}
& \text { A: } T(r, \theta)=k r^{2} \\
& \text { B: } T(r, \theta)=k\left(r^{2}+\theta^{2}\right)
\end{aligned}
$$

Are mathematicians bilingual?

My Background

- Math major (only). (No physics lab...)
- Ph.D. in mathematics. (Relativity!)
- Postdocs in both math and physics.
- My wife is a physicist. (She was a double major.)
- Our daughter is a math educator. (Also a double major.)

My department thinks I'm a physicist.
(The physics department knows better.)

The Paradigms in Physics Project

- Complete redesign of physics major - 20 new courses
- Junior-year "paradigms" designed around common themes.
(Central Forces: CM of solar system + QM of hydrogen atom.)
- 2×3-credit in parallel $\longmapsto 3 \times 2$-credit in series.
- Senior-year "capstones" finish traditional disciplinary content. (Electromagnetism, Quantum Mechanics, etc.)
- 24 years of continuous NSF funding.
- Living curriculum: monthly curriculum meetings for 24 years!
- Paradigms 2.0 implemented in 2017:
3×3-week $\longmapsto 2 \times(4+1)$-week courses ("Math Bits")

Derivatives

Tell me something you know about derivatives. Share your answer with your neighbor(s).

Theoretical background

- Vinner (1983): A concept image is the set of properties associated with a concept together with the mental pictures of the concept.
- Sfard (1991): The process-object framework describes mathematics as proceeding through processes acting on objects, with those processes then becoming reified into objects.
- Zandieh (2000): Student understanding of the concept of derivative can be described by associating process-object layers with representations or contexts.

Zandieh (2000)

Process- object layer	Graphical	Verbal	Physical	Symbolic	Other
	Slope	Rate	Velocity	Difference Quotient	
Limit					
Function					

Michelle Zandieh, A theoretical framework for analyzing student understanding of the concept of derivative, CBMS Issues in Mathematics Education 8, 103-122, 2000.

Extended Theoretical Framework for Concept of Derivative

Processobject layer	Graphical	Verbal	Symbolic	Numerical	Physical
	Slope	Rate of Change	Difference Quotient	Ratio of Changes	Measurement
Ratio	5	"avg. rate of change"	$\frac{f(x+\Delta x)-f(x)}{\Delta x}$	$\begin{aligned} & \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & \text { numerically } \end{aligned}$	
Limit	L	"inst. rate of change"	$\lim _{\Delta x \rightarrow 0} \cdots$	$\begin{aligned} & \ldots \text { with } \\ & \Delta x \\ & \text { small } \end{aligned}$	
Function	\forall	"....at any point/time"	$f^{\prime}(x)=$	depends on x	tedious repetition

No entry for symbolic differentiation!!

Roundy, Dray, Manogue, Wagner, \& Weber, CRUME 18 Proceedings, MAA, 2015. http://sigmaa.maa.org/rume/Site/Proceedings.html

Learning Progression

Learning Progression for Partial Derivatives

- Successively more sophisticated ways of thinking about a topic.
- Sequences supported by research on learner's ideas and skills.
- Lower anchor grounded in students' prior ideas and skills.
- Upper anchor grounded in knowledge and practices of experts.

Duschle et al., NRC, 2007; Plummer, 2012; Sikorski et al., 2009, 2010 Manogue, Dray, Emigh, Gire, \& Roundy, PERC 2017

Differentials

Does $\frac{\mathrm{df}}{\mathrm{dx}}$ mean " f ' (x) " or "df over dx "?

$$
\begin{aligned}
& d\left(u^{2}\right)=2 u d u \\
& d(\sin u)=\cos u d u
\end{aligned}
$$

Instead of:

- chain rule
- related rates
- implicit differentiation
- derivatives of inverse functions
- difficulties of interpretation (units!)

One coherent idea:

> "Zap equations with d"
(infinitesimal reasoning)
Dray \& Manogue, CMJ 34, 283-290 (2003); CMJ 41, 90-100 (2010).

Vector Calculus

Vector calculus is about one coherent concept: Infinitesimal Displacement (à la Griffiths!)

$$
\begin{aligned}
d s & =|d \overrightarrow{\mathbf{r}}| \\
d \overrightarrow{\mathbf{A}} & =d \overrightarrow{\mathbf{r}}_{1} \times d \overrightarrow{\mathbf{r}}_{2} \\
d A & =\left|d \overrightarrow{\mathbf{r}}_{1} \times d \overrightarrow{\mathbf{r}}_{2}\right| \\
d V & =\left(d \overrightarrow{\mathbf{r}}_{1} \times d \overrightarrow{\mathbf{r}}_{2}\right) \cdot d \overrightarrow{\mathbf{r}}_{3}
\end{aligned}
$$

Gradient

Tell me something you know about the gradient. Share your answer with your neighbor(s).

- $\vec{\nabla} f=\frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}+\ldots$
- The gradient points in the steepest direction.
- The magnitude of the gradient tells you how steep.
- The gradient is perpendicular to the level curves.

The Hill

Suppose you are standing on a hill. You have a topographic map, which uses rectangular coordinates (x, y) measured in miles. Your global positioning system says your present location is at one of the points shown. Your guidebook tells you that the height h of the hill in feet above sea level is given by

$$
h=a-b x^{2}-c y^{2}
$$

where $a=5000 \mathrm{ft}, b=30 \frac{\mathrm{ft}}{\mathrm{mi}^{2}}$, and $c=10 \frac{\mathrm{ft}}{\mathrm{mi}^{2}}$.

The Hill

Stand up and close your eyes. Hold out your right arm in the direction of the gradient where you are standing.

Partial Derivatives

State Variables:

$$
\begin{aligned}
T & =\text { temperature } \\
S & =\text { entropy } \\
p & =\text { pressure } \\
V & =\text { volume }
\end{aligned}
$$

First Law:

$$
d U=T d S-p d V
$$

($U=$ internal energy)

- Compressibility $=-\frac{1}{V} \frac{\partial V}{\partial p}$
- Design an experiment to measure compressibility.
- What are the independent variables??

Name the Experiment

Name the Experiment

David Roundy, Mary Bridget Kustusch, and Corinne Manogue, Name the experiment! Interpreting thermodynamic derivatives as thought experiments, Am. J. Phys. 82, 39-46, 2014.

Partial Derivative Machine

- Developed for junior-level thermodynamics course
- Two positions, x_{i}, two string tensions (masses), F_{i}.
- "Find $\frac{\partial x}{\partial F}$."
- Idea: Measure $\Delta x, \Delta F$; divide.
- Mathematicians:
"That's not a derivative!"

Roundy et al., Experts' Understanding of Partial Derivatives Using the Partial Derivative Machine, PERC 2014

Thick Derivatives

Math: \exists "bright line" between average rate of change and instantaneous rate of change.
(Such averages are used to approximate derivatives.)
Physics: "Average" refers to secant lines, not (good) approximations to tangent lines.

Move the bright line!

Thick Derivatives!

(Derivatives are fundamentally ratios of small changes, not limits.)
[Dray, AMS Blog on Education, 5/31/16]

Surfaces

(Each surface is dry-erasable, as are the matching contour maps.) Raising Calculus to the Surface (Aaron Wangberg) Raising Physics to the Surface (+ Liz Gire, Robyn Wangberg) http://raisingcalculus.winona.edu

Multiple Representations

\sum over all rectangles

Representational Transformation

Evaluate $\left(\frac{\partial U}{\partial T}\right)_{P}$ at $P=10 \mathrm{~atm} ., T=410 \mathrm{~K}$ using the information below.

$P(\mathrm{~atm})$.	$T(K)$	$V\left(\mathrm{~cm}^{3}\right)$
10	300	1.32
10	310	1.44
10	320	1.57
10	330	1.71
10	340	1.85
10	350	2.00
10	360	2.15
10	370	2.32
10	380	2.49
10	390	2.67
10	400	2.86
10	410	3.05
10	420	3.25
10	430	3.47
10	440	3.69
10	450	3.91
10	460	4.15
10	470	4.40

Pressure P, Temperature T, and Volume

Internal Energy $U(T, V)$.

Rabindra R. Bajracharya, Paul J. Emigh, and Corinne A. Manogue,
Students' stategies for solving a multi-representational partial derivative problem in thermodyanmics, in preparation.

Teaching Geometric Reasoning

Vector Calculus Bridge Project:

http://math.oregonstate.edu/bridge

- Differentials (Use what you know!)
- Multiple representations
- Symmetry (adapted bases, coordinates)
- Geometry (vectors, div, grad, curl)
- Online text (http://math.oregonstate.edu/BridgeBook)

Paradigms in Physics Project:

http://physics.oregonstate.edu/portfolioswiki

- Redesign of undergraduate physics major (18 new courses!)
- Active engagement (300+ documented activities!)

Tevian Dray
A Tale of Two Disciplines

SUMMARY

- Physics \neq Mathematics ("Spherical coordinates")
- Syllabus \neq Content ("Divergence Theorem")
- Hidden curriculum matters ("Think like a physicist")
- Curriculum is dynamic! (Keep talking!)

OSU
 Oregon State

Tevian Dray \& Corinne A. Manogue

http://math.oregonstate.edu/bridge http://math.oregonstate.edu/BridgeBook http://physics.oregonstate.edu/portfolioswiki

