Partial Derivatives in Calculus and Upper-Level Physics Courses

Corinne Manogue \& Tevian Dray \& The Paradigms in Physics Team February 6, 2018

Physics Education Research

OregonState University

Support

- National Science Foundation
- DUE-9653250, 0231194, 0618877
- DUE-0088901, 0231032, 0837829
- DUE-1023120, 1323800
- Oregon State University

- Oregon Collaborative for Excellence in the Preparation of Teachers
- Grinnell College
- Mount Holyoke College

- Utah State University

Dissemination of Curriculum

- Old: Textbook authors determined order. lecture, reading, homework
- Now: Who determines the order? in-class activities, SWBQs/concept tests, mini-lectures, video, online short readings, flipping and backflipping, ...
- Challenge: How do we disseminate 2 decades of new holistic curriculum structures in the era of active engagement/online resources?

Learning Progressions

- Successively more sophisticated ways of thinking about a topic.
- Sequences that are supported by research on learner's ideas and skills.

Learning Progression for Partial Derivatives vec Calc

Duschle et al., NRC, 2007 Plummer, 2012
Sikorski et al., 2009, 2010

Learning Progressions

- What is an effective content sequence?
- Different types of resources: activities, SWBQs, text bits, homework problems, ...
- What research supports these choices?

Learning Progressions

- Lower anchor grounded in prior ideas and skills students bring to the classroom.
- Upper anchor grounded in knowledge and practices of experts.

What is a Concept Image?

- Concept Image: the total cognitive structure that is associated with a concept, which includes all the mental pictures and associated properties and processes.

Tall and Vinner, Educ. Stud. Math., (1981).

Small White Board Questions

 (SWBQs)- For this audience:
- Write an element of your concept image of derivative.
- For students:
- Write something that you know about derivatives.

Concept Image of Derivative

- Ratio
- Slope
- Limit
- Function
- Rate of Change
- Velocity
- Difference Quotient

Lower Anchor for Derivatives

Derivative is slope of tangent line.

Mechanics—Lower Division

Derivative = Speed=Slope

This is a Trajectory

$\underset{\text { cares }}{\text { Nobody }}=\frac{d y}{d x}$
Derivative $=$ Slope

Mechanics—Upper Division

Parameter t

Trajectory

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \\
& =\frac{d x}{d t} \hat{x}+\frac{d y}{d t} \hat{y}
\end{aligned}
$$

- Speed is NOT slope.
- Velocity points in direction of slope.

Processobject layer	Graphical	Verbal	Symbolic	Numerical	Physical
	Slope	Rate of Change	Difference Quotient	Ratio of Changes	Measurement
Ratio	\forall	"avg. rate of change"	$\frac{f(x+\Delta x)-f(x)}{\Delta x}$	$\begin{gathered} \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ \text { numerically } \end{gathered}$	
Limit	L	"inst. rate of change"	$\lim _{\Delta x \rightarrow 0} \cdots$...with Δx small	
Function	x	"...at any point/time"	$f^{\prime}(x)=$	depends on x	tedious repetition

Process- object layer	\cdot	Symbolic \cdot
	Instrumental Understanding	
Function	rules to"take a derivative"	

Zandieh, CBMS Issues in Math Ed, 2000.
Roundy, et al., RUME, 2015.

Name the Experiment

- Design an experiment to measure compressibility:

$$
\beta_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \quad v s . \quad \beta_{S}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{S}
$$

Isothermal
Isentropic

amemper

Name the Experiment

Linear Regime vs. Strict Limit

- Which diagram(s) represent the derivative?

- average vs. approximation vs. exact

Thick Derivatives

- What counts as a derivative?
- Mathematicians: bright line at strict derivative.
- Physicists: bright line at "good enough."

Notations for Partial Derivatives

- Math vs Physics
- Mechanics

$$
\vec{f}=f_{x} \hat{x}+f_{y} \hat{y}
$$

- E \& M

$$
E_{x}=-\left(\frac{\partial V}{\partial x}\right)
$$

Equations Encode Meaning

$\operatorname{grad} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$

$$
\vec{\nabla} V=\frac{\partial V}{\partial x} \hat{x}+\frac{\partial V}{\partial y} \hat{y}+\frac{\partial V}{\partial z} \hat{z}
$$

Which Aspects of Concept Image Are Cued?

- The importance of representations:

Different representations cue different aspects of a student's concept image.

- Rule of Four:
- Graphs
- Equations
- Words
- Numerical

Concept Image of Gradient

- Use SWBQs to help students link elements of their concept image:

On your small white board, write ONE element of your concept image of gradient.

Kinesthetic Activity: Gradient

- Points in the direction of steepest change.
- Magnitude is slope.

Oregon State
 PER

 Gradient: Which Direction?

Physics Representations

- Functions of 3 variables
- Equipotential Surfaces
- 3-D Gradient Vectors
- Electric Field Lines

Research on Partial Derivatives

- What information can be easily extracted from particular representations?
- How do students change from one representations to another?
- What does expert problem solving look like?

Representational
 Transformation

Rabindra Bajracharya

Evaluate $\left(\frac{\partial U}{\partial T}\right)_{P}$ at $P=10 \mathrm{~atm} ., T=410 \mathrm{~K}$ using the information below.

P (atm.)	$T(\mathrm{~K})$	$V\left(\mathrm{~cm}^{3}\right)$
10	300	1.32
10	310	1.44
10	320	1.57
10	330	1.71
10	340	1.85
10	350	2.00
10	360	2.15
10	370	2.32
10	380	2.49
10	390	2.67
10	400	2.86
10	410	3.05
10	420	3.25
10	430	3.47
10	440	3.69
10	450	3.91
10	460	4.15
10	470	4.40

Pressure P, Temperature T, and Volume

Internal Energy $U(T, V)$,

Oregon State D

Contour Maps

Partial Derivatives Machine

David Roundy

Mike Vignal

Elizabeth Gire
Aaron Wangberg Robyn Wangberg

Chain Rule Diagrams

Ian Founds

Experts in Thermo

$$
\begin{gather*}
p(V, T) \\
u(V, T) \\
\left(\frac{\partial U}{\partial p} / s=\left(\frac{\partial U}{\partial V}\right)\left(\frac{\partial V}{\partial p} / s\right.\right. \tag{18}\\
\left.S(\text { constant }) \rightarrow(V-N 6) T^{3 / 2} / \text { (onstant }\right)=C \tag{19}\\
T^{3 / 2}=C / V-N 6 \tag{20}\\
T=(C / V-N 6)^{2 / 3}
\end{gather*}
$$

Mary Bridget Kustusch

$$
\begin{align*}
& P=\frac{N k(C)^{2 / 3}}{(V-N b)^{5 / 3}}-\frac{a V^{2}}{V^{2}}=\left[\frac{-5}{3} \frac{N K C^{2 / 3}}{(V-N b)^{1 / 3}}+\frac{\partial a N^{2}}{V^{3}}\right]=\left(\frac{, P}{\partial V}\right)_{S}=\alpha \tag{}\\
& U\left.=\frac{3}{2} N k\left(\frac{C}{V-N b}\right)^{2 / 3}-\frac{a N^{2}}{V}=\left[\frac{-2}{3}\right) \frac{3}{2} N k C^{2 / 3}\left(\frac{1}{V-N b}\right)^{5 / 3}+\frac{a V^{2}}{V^{2}}\right]=\left(\frac{\partial U}{\partial V}\right)_{S}=B \tag{22}\\
&\left(\frac{\partial U}{\partial P}\right)_{S}=\left(\frac{\partial U}{\partial V}\right)_{S}\left(\frac{\partial V}{\partial P}\right)_{S}=\frac{B}{\alpha}
\end{align*}
$$

Conclusion

- The concept image of partial derivative has MANY, many, many elements!
- Experts use MANY representations.
- Different representations cue reasoning about different elements.
- Different subfields of mathematics and physics rely on different elements.
- Choose activities that foster connections between elements.
- Learning Progression: Order matters.

