Active Engagement: Lessons learned from the Paradigms and Bridge projects

Corinne Manogue & Tevian Dray

Departments of Physics & Mathematics Oregon State University http://physics.oregonstate.edu/~corinne http://math.oregonstate.edu/~tevian

Get Ready:

Please sit with one or two other partners.

For each group, please pick up:

- 1 small whiteboard;
- 1 whiteboard pen;
- 1 high-tech eraser (e.g. tissue/napkin);

Teaching

Good teaching is like picking up someone else's baby.

Using the Quaternions to Implement Rotations

Tevian Dray & Corinne Manogue

Departments of Mathematics & Physics Oregon State University http://math.oregonstate.edu/~tevian http://physics.oregonstate.edu/~corinne

Introduction

3-d rotations: Aeronautics, robotics, computer graphics, ... **New Content:** Use quaternions to implement rotations

Trigonometry

Polar coordinates: $x = r \cos \theta$; $y = r \sin \theta$.

Research-Based Instruction

Things to consider:

- Whenever possible, base your instruction on what is known about incoming student resources.
- Example: Dr. Emily Smith (OSU 2016) showed that many upper-division physics students know triangle trigonometry, but not unit-circle trigonometry. This causes problems with complex numbers.

Classroom implementation:

• Implication: Use the circle simulation.

Complex Plane

$$\mathbb{C} = \mathbb{R} \oplus i\mathbb{R}$$

$$i^2 = -1$$

$$(x,y) \longmapsto x + iy$$

 $x + iy = r \cos \theta + i r \sin \theta = r e^{i\theta}$

Special case:
$$e^{\pm i\pi/2} = \pm i$$

$$e^{i\pi} + 1 = 0$$

Representing Complex Numbers

- Please stand up.
- Use left hand.
- Real axis points forward.
- Imaginary axis points upward.

Show me:

- 1
- 2 i
- 1 + i
- $e^{-i\pi/3}$

Kinesthetic Activity

Things to consider:

- Everyone is awake!
- Teacher can see what everyone is thinking.
- Highlights geometric reasoning.
- Students get geometric cues from others.
- Students must make a decision.
- Student can be asked to translate representations.

Classroom implementation:

- Please stand up.
- Show me...
- Thank you, you can sit down.

$$(1+i)i=i-1$$

If 1 + i is multiplied by i, the corresponding vector is:

- 1: Reflected about the x-axis
- 2: Reflected about the y-axis
- **3:** Rotated by $\frac{\pi}{2}$ (90°) counterclockwise
- **4:** Rotated by $\frac{\pi}{2}$ (90°) clockwise

DO NOT VOTE UNTIL TOLD TO DO SO!

$$(1+2i)i$$

If 1 + 2i is multiplied by i, the corresponding vector is:

- 1: Reflected about the x-axis
- 2: Reflected about the y-axis
- **3:** Rotated by $\frac{\pi}{2}$ (90°) counterclockwise
- **4:** Rotated by $\frac{\pi}{2}$ (90°) clockwise

DO NOT VOTE UNTIL TOLD TO DO SO!

$$(re^{i\theta})i$$

If $re^{i\theta}$ is multiplied by i, the corresponding vector is

- 1: Reflected about the x-axis
- **2:** Reflected about the *y*-axis
- **3:** Rotated by $\frac{\pi}{2}$ (90°) counterclockwise
- **4:** Rotated by $\frac{\pi}{2}$ (90°) clockwise

DO NOT VOTE UNTIL TOLD TO DO SO!

Concept Tests/Peer Instruction/Clickers

Things to consider:

- Asks students to make a commitment.
- Asks students to defend an answer.
- Good questions: conceptual, focus on common mistakes.

Classroom implementation:

- Many "response" systems: clickers, ABCD cards, whiteboards, fingers.
- Two stages.
- Simultaneous and anonymous.
- Convince your neighbor.

Multiplication by $se^{i\alpha}$

$$(re^{i\theta})(se^{i\alpha})$$

If $re^{i\theta}$ is multiplied by $se^{i\alpha}$, the corresponding vector is...

WRITE YOUR ANSWER ON YOUR SMALL WHITE BOARD!

Multiplication by *i*:
$$(x + iy)i = ix + i^2y = -y + ix$$

Rotates counterclockwise by $\pi/2$

Multiplication by
$$s e^{i\alpha}$$
: $(r e^{i\theta})(s e^{i\alpha}) = rs e^{i(\theta + \alpha)}$

Rotates counterclockwise by α and stretches by s

Sequences of Questions

Things to consider:

- Frame the sequence with increasing sophistication.
- Choose clicker questions vs. SWBQs by need for open-endedness.
- Choose clicker questions vs. SWBQs by type of response desired.

Classroom implementation:

- SWBQs: Gather responses and discuss.
- Use wrap-up as an opportunity for reflection.
- SWBQs can be spontaneous.

Quaternions

 $\mathbb{H}=\mathbb{C}\oplus\mathbb{C}j$

$$q = (x + y i) + (z + w i) j = x + y i + z j + w k$$
$$ij = k = -ji; i^{2} = j^{2} = k^{2} = -1$$

 \mathbb{H} is for Hamilton! (\mathbb{Q} denotes rationals)

Calculate with your group: iq and qi

iq vs. qi

Small Group Activity

Things to consider:

- Can emphasize more complex problems/reasoning.
- Students practice problem solving themselves.
- Equity: moves office hours into the classroom.

Classroom implementation:

- You have 10 minutes; GO!
- Who needs help?
- Do you need more time?
- Pause.

Conjugation

$$q = x + iy + jz + kw$$

$$iq = ix - y + kz - jw$$

$$qi = ix - y - kz + jw$$

$$iqi = -x-iy+jz+kw$$

 $-iqi = x+iy-jz-kw$
(rotation in jk -plane)

Lectures/Slides/Figures

Things to consider:

- Lecture is fast; use it when it works.
- What is the focus of attention? (You, the slides, their notes...)
- How busy are the slides?
- Do the figures have distracting elements?

Classroom implementation:

Have a way to show students where you are on the slide.

Rotations

$$q \longmapsto e^{i\theta/2}qe^{-i\theta/2}$$

- $1 \longmapsto 1$; $i \longmapsto i$
- Rotates by θ "about i" (in jk-plane)
- $q \mapsto e^{j\theta/2}qe^{-j\theta/2}$ rotates about j, etc.
- \therefore SO(3), the rigid rotations in 3 dimensions

Simulation/Demo

Things to consider:

- Decide between black box or open coding.
- Show geometry and/or time dependence.
- Plan specific questions: Students need to be taught to ask relevant questions or to explore parameter space.

Classroom implementation:

 Stand behind students to see if they are having problems with the computer.

Generalizations

2015

Use to model particle physics

http://octonions.geometryof.org/GO

Story Telling

Plum Muffins

Story telling is memorable.

Course Notes

Things to consider:

- How much detail should you include?
- How closely should the notes follow the course?

Classroom implementation:

- How do you counter the ideas: "I have the notes on my computer, so I understand the content" or "I have the notes on my computer, so I will study them later"?
- When should students have access to the notes?

Lecture (vs. Activities)

The Instructor:

- Paints big picture
- Inspires.
- Covers lots fast.
- Models speaking.
- Models problem-solving.
- Controls questions.
- Makes connections.
- Demonstrates new complicated reasoning.

The Students:

- Focus on subtleties.
- Experience delight.
- Slow, but in depth.
- Practice speaking.
- Practice problem-solving.
- Control questions.
- Make connections.
- Discover questions about what is complicated.

Please Return:

Please clean up your toys:

- Erase your whiteboard.
- Return the whiteboard and marker.