OCTONIONS and FERMIONS

Oregon State

Tevian Dray \& Corinne A. Manogue
I: Octonions
II: Dimensional Reduction
III: Leptons
IV: Cayley Spinors

DIVISION ALGEBRAS

Real Numbers:
\mathbb{R}

Quaternions:

$$
\begin{gathered}
\mathbb{H}=\mathbb{C}+\mathbb{C} j \\
q=(a+b i)+(c+d i) j
\end{gathered}
$$

Complex Numbers:

$$
\begin{gathered}
\mathbb{C}=\mathbb{R}+\mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$$
i^{2}=j^{2}=-1
$$

QUATERNIONS

THE DISCOVERY OF THE QUATERNIONS

Brougham Bridge (Dublin)

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^{2}=j^{2}=k^{2}=i j k=-1$
\& cut it on a stone of this bridge

VECTORS I

$$
\begin{gathered}
v=b i+c j+d k \longleftrightarrow \overrightarrow{\boldsymbol{v}}=b \hat{\boldsymbol{\imath}}+c \hat{\boldsymbol{\jmath}}+d \hat{\boldsymbol{k}} \\
v w \longleftrightarrow-\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{w}}+\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}}
\end{gathered}
$$

Dot product exists in any dimension
but
Cross product exists only in 3 and 7 dimensions

DIVISION ALGEBRAS

Real Numbers:
\mathbb{R}

Quaternions:

$$
\begin{gathered}
\mathbb{H}=\mathbb{C}+\mathbb{C} j \\
q=(a+b i)+(c+d i) j
\end{gathered}
$$

Complex Numbers:

$$
\begin{gathered}
\mathbb{C}=\mathbb{R}+\mathbb{R} i \\
z=x+y i
\end{gathered}
$$

Octonions:

$$
\mathbb{O}=\mathbb{H}+\mathbb{H} \ell
$$

$$
i^{2}=j^{2}=\ell^{2}=-1
$$

OCTONIONS

each line is quaternionic

$$
\begin{aligned}
\left(\begin{array}{l}
(i j) \ell \\
i(j \ell)
\end{array}=-k \ell\right. \\
i
\end{aligned}
$$

```
not associative
```


THE DISCOVERY OF THE OCTONIONS

Brougham Bridge (Dublin)

John T. Graves (1843!)
Arthur Cayley (1845)
octaves, Cayley numbers

VECTORS II

$$
\begin{aligned}
x= & \left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right) \longleftrightarrow \boldsymbol{X}=\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& -\operatorname{det}(\boldsymbol{X})=-t^{2}+x^{2}+y^{2}+z^{2}
\end{aligned}
$$

- \{vectors in (3+1)-dimensional spacetime\} $\longleftrightarrow\{2 \times 2$ complex Hermitian matrices $\}$
\bullet determinant \longleftrightarrow (Lorentzian) inner product

LORENTZ TRANSFORMATIONS

Exploit (local) isomorphism:

$$
\begin{gathered}
S O(3,1) \approx S L(2, \mathbb{C}) \\
\boldsymbol{x}^{\prime}=\boldsymbol{\Lambda} \boldsymbol{x} \\
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha & 0 \\
0 & \sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \longleftrightarrow \boldsymbol{X}^{\prime}=\boldsymbol{M} \boldsymbol{X} \boldsymbol{M}^{\dagger} \\
\operatorname{det}(\boldsymbol{M})=1 \longrightarrow\left(\begin{array}{cc}
e^{-\frac{i \alpha}{2}} & 0 \\
0 & e^{\frac{i \alpha}{2}}
\end{array}\right) \\
\end{gathered}
$$

WHICH DIMENSIONS?

$$
\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O} \longmapsto
$$

$$
\boldsymbol{X}=\left(\begin{array}{cc}
p & \bar{a} \\
a & m
\end{array}\right) \quad(p, m \in \mathbb{R} ; a \in \mathbb{K})
$$

$\operatorname{dim} \mathbb{K}+2=3,4,6,10$ spacetime dimensions
supersymmetry

$$
\begin{aligned}
& S O(5,1) \approx S L(2, \mathbb{H}) \\
& S O(9,1) \approx S L(2, \mathbb{O})
\end{aligned}
$$

ROTATIONS

$$
\begin{gathered}
\boldsymbol{M}_{z x}=\left(\begin{array}{cc}
\cos \frac{\alpha}{2} & -\sin \frac{\alpha}{2} \\
\sin \frac{\alpha}{2} & \cos \frac{\alpha}{2}
\end{array}\right) \\
\boldsymbol{M}_{x y}=\left(\begin{array}{cc}
e^{-\frac{i \alpha}{2}} & 0 \\
0 & e^{\frac{i \alpha}{2}}
\end{array}\right) \quad \boldsymbol{M}_{y z}=\left(\begin{array}{cc}
\cos \frac{\alpha}{2} & -i \sin \frac{\alpha}{2} \\
-i \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2}
\end{array}\right) \\
i \longrightarrow j, k, \ldots, \ell
\end{gathered}
$$

$\mathbb{H}: M=e^{k \theta} \boldsymbol{I}$
© : need flips

$$
\boldsymbol{X}^{\prime}=\boldsymbol{M}_{2}\left(\boldsymbol{M}_{1} \boldsymbol{X} \boldsymbol{M}_{1}^{\dagger}\right) \boldsymbol{M}_{2}^{\dagger}
$$

$$
\boldsymbol{M}_{1}=i \boldsymbol{I} \quad \boldsymbol{M}_{2}=(i \cos \theta+j \sin \theta) \boldsymbol{I}
$$

PENROSE SPINORS

$$
\begin{array}{rc}
v=\binom{c}{\bar{b}} & \operatorname{det}\left(v v^{\dagger}\right)=0 \\
v v^{\dagger}=\left(\begin{array}{cc}
|c|^{2} & c b \\
\bar{b} \bar{c} & |b|^{2}
\end{array}\right) & (\text { spinor })^{2}=\text { null vector } \\
\hline
\end{array}
$$

Lorentz transformation:

$$
\begin{gathered}
v^{\prime}=\boldsymbol{M} v \\
\boldsymbol{M}\left(v v^{\dagger}\right) \boldsymbol{M}^{\dagger}=(\boldsymbol{M} v)(\boldsymbol{M} v)^{\dagger} \\
\text { compatibility }
\end{gathered}
$$

WEYL EQUATION

- Massless, relativistic, spin $\frac{1}{2}$
- Momentum space

$$
\begin{gathered}
\widetilde{\boldsymbol{P}} \psi=0 \\
\widetilde{\boldsymbol{P}}=\boldsymbol{P}-(\operatorname{tr} \boldsymbol{P}) \boldsymbol{I} \\
\Longrightarrow \operatorname{det}(P)=0 \begin{array}{c}
(3 \text { of } 4 \text { string equations! })
\end{array} ~
\end{gathered}
$$

One solution: (P, θ complex)

$$
\begin{gathered}
P= \pm \theta \theta^{\dagger} \\
\widetilde{\theta \theta^{\dagger}} \theta=\left(\theta \theta^{\dagger}-\theta^{\dagger} \theta\right) \theta=\theta \theta^{\dagger} \theta-\theta^{\dagger} \theta \theta=0
\end{gathered}
$$

General solution: $(\xi \in \mathbb{O})$

$$
\psi=\theta \xi
$$

$$
P, \psi \text { quaternionic }
$$

DIRAC EQUATION

4×4 complex:

$$
0=\left(\gamma_{t} \gamma_{\mu} p^{\mu}-m \gamma_{t}\right) \Psi
$$

2×2 quaternionic:

$$
\begin{gathered}
0=\left(p^{t} \sigma_{t}-p^{\alpha} \sigma_{\alpha}-m \sigma_{k}\right) \psi \\
=-\widetilde{P} \psi
\end{gathered}
$$

Isomorphism: $\left(\mathbb{H}^{2} \approx \mathbb{C}^{4}\right)$

$$
\binom{c-k b}{d+k a} \longleftrightarrow\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

DIMENSIONAL REDUCTION

$$
S O(3,1) \approx S L(2, \mathbb{C}) \subset S L(2, \mathbb{O}) \approx S O(9,1)
$$

Projection: $(\mathbb{O} \rightarrow \mathbb{C})$

$$
\pi(p)=\frac{1}{2}(p+\ell p \bar{\ell})
$$

Determinant: $\operatorname{det}(P)=0 \Longrightarrow$

$$
\operatorname{det}(\pi(P))=m^{2}
$$

Mass Term:

$$
\begin{aligned}
& P=\pi(P)+m \sigma_{k} \quad \sigma_{k}=\left(\begin{array}{cc}
0 & -k \\
k & 0
\end{array}\right) \\
& P=\left(\begin{array}{cc}
p^{t}+p^{z} & p^{x}-\ell p^{y}-k m \\
p^{x}+\ell p^{y}+k m & p^{t}-p^{z}
\end{array}\right)
\end{aligned}
$$

SPIN

Finite rotation:

$$
R_{z}=\left(\begin{array}{cc}
e^{\ell \frac{\theta}{2}} & 0 \\
0 & e^{-\ell_{2}}
\end{array}\right)
$$

Infinitesimal rotation:

$$
L_{z}=\left.\frac{d R_{z}}{d \theta}\right|_{\theta=0}=\frac{1}{2}\left(\begin{array}{cc}
\ell & 0 \\
0 & -\ell
\end{array}\right)
$$

Right self-adjoint operator:

$$
\hat{L}_{z} \psi:=\left(L_{z} \psi\right) \bar{\ell}
$$

Right eigenvalue problem:

$$
\hat{L}_{z} \psi=\psi \lambda
$$

ANGULAR MOMENTUM REVISITED

$$
\begin{array}{ll}
L_{x}=\frac{1}{2}\left(\begin{array}{cc}
0 & \ell \\
\ell & 0
\end{array}\right) & L_{y}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
L_{z}=\frac{1}{2}\left(\begin{array}{cc}
\ell & 0 \\
0 & -\ell
\end{array}\right) & \hat{L}_{\mu} \psi:=-\left(L_{\mu} \psi\right) \ell
\end{array}
$$

$$
\begin{aligned}
\psi=e_{\uparrow}=\binom{1}{k} & \Longrightarrow \\
\hat{L}_{z} \psi & =\psi \frac{1}{2} \quad \hat{L}_{x} \psi=-\psi \frac{k}{2} \quad \hat{L}_{y} \psi=-\psi \frac{k \ell}{2}
\end{aligned}
$$

```
Simultaneous eigenvector!
```

(only 1 real eigenvalue)

LEPTONS

$$
\begin{aligned}
& \psi \quad P=\psi \psi^{\dagger} \\
& e_{\uparrow}=\binom{1}{k} \\
& e_{\uparrow} e_{\uparrow}^{\dagger}=\left(\begin{array}{cc}
1 & -k \\
k & 1
\end{array}\right) \\
& e_{\downarrow}=\binom{-k}{1} \\
& e_{\downarrow} e_{\downarrow}^{\dagger}=\left(\begin{array}{cc}
1 & -k \\
k & 1
\end{array}\right) \\
& \nu_{z}=\binom{0}{k} \\
& \nu_{z} \nu_{z}^{\dagger}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \nu_{-z}=\binom{k}{0} \\
& \nu_{-z} \nu_{-z}^{\dagger}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

How Many Quaternionic Spaces?

Dimensional Reduction:

$$
\Longrightarrow \ell \in \mathbb{H}
$$

Orthogonality:

$$
\begin{aligned}
\left(\mathbb{H}_{1} \cap \mathbb{H}_{2}\right. & =\mathbb{C}) \\
& \longmapsto i, j, k
\end{aligned}
$$

> Answer: 3!

LEPTONS

$$
\begin{array}{cc}
e_{\uparrow}=\binom{1}{k} & e_{\uparrow} e_{\uparrow}^{\dagger}=\left(\begin{array}{cc}
1 & -k \\
k & 1
\end{array}\right) \\
e_{\downarrow}=\binom{-k}{1} & e_{\downarrow} e_{\downarrow}^{\dagger}=\left(\begin{array}{cc}
1 & -k \\
k & 1
\end{array}\right) \\
\nu_{z}=\binom{0}{k} & \nu_{z} \nu_{z}^{\dagger}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\nu_{-z}=\binom{k}{0} & \nu_{-z} \nu_{-z}^{\dagger}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
\emptyset_{z}=\binom{0}{1} & \emptyset_{z} \emptyset_{z}^{\dagger}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

WHAT NEXT?

Have:

3 generations of leptons!
Neutrinos have just one helicity!
What about \varnothing_{z} ?
Want:

- interactions
- quarks/color (SU(3)!)
- charge

JORDAN ALGEBRAS

Exceptional quantum mechanics:
(Jordan, von Neumann, Wigner)

$$
\begin{gathered}
(\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{X}^{2}=\mathcal{X} \circ\left(\mathcal{Y} \circ \mathcal{X}^{2}\right) \\
\mathcal{X}=\left(\begin{array}{ccc}
p & a & \bar{c} \\
\bar{a} & m & b \\
c & \bar{b} & n
\end{array}\right) \\
\mathcal{X} \circ \mathcal{Y}=\frac{1}{2}(\mathcal{X} \mathcal{Y}+\mathcal{Y} \mathcal{X}) \\
\mathcal{X} * \mathcal{Y}= \\
\mathcal{X} \circ \mathcal{Y}-\frac{1}{2}(\mathcal{X} \operatorname{tr}(\mathcal{Y})+\mathcal{Y} \operatorname{tr}(\mathcal{X})) \\
\quad+\frac{1}{2}(\operatorname{tr}(\mathcal{X}) \operatorname{tr}(\mathcal{Y})-\operatorname{tr}(\mathcal{X} \circ \mathcal{Y})) \mathcal{I}
\end{gathered}
$$

EXCEPTIONAL GROUPS

$$
\begin{aligned}
& \boldsymbol{F}_{4}: " S U(3, \mathbb{O}) \text { " } \\
& \quad\left(\mathcal{M X}^{\dagger}\right) \circ\left(\mathcal{M Y}^{\dagger} \mathcal{M}^{\dagger}\right)=\mathcal{M}(\mathcal{X} \circ \mathcal{Y}) \mathcal{M}^{\dagger}
\end{aligned}
$$

$$
\boldsymbol{E}_{\mathbf{6}}: " S L(3, \mathbb{O}) "
$$

$$
\operatorname{det} \mathcal{X}=\frac{1}{3} \operatorname{tr}((\mathcal{X} * \mathcal{X}) \circ \mathcal{X})
$$

$$
S O(3,1) \times U(1) \times S U(2) \times S U(3) \subset E_{6}
$$

$$
\begin{aligned}
\mathcal{X} & =\left(\begin{array}{cc}
\boldsymbol{X} & \theta \\
\theta^{\dagger} & n
\end{array}\right) \quad \Longrightarrow \mathcal{M X} \mathcal{M}^{\dagger}=\left(\begin{array}{cc}
\boldsymbol{M} \boldsymbol{X} \boldsymbol{M}^{\dagger} & \boldsymbol{M} \theta \\
\theta^{\dagger} \boldsymbol{M}^{\dagger} & n
\end{array}\right) \\
\mathcal{M} & =\left(\begin{array}{cc}
\boldsymbol{M} & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

CAYLEY SPINORS

$$
\begin{gathered}
\mathcal{P}=\left(\begin{array}{cc}
\boldsymbol{P} & \theta \xi \\
\bar{\xi} \theta^{\dagger} & |\xi|^{2}
\end{array}\right) \\
\mathcal{P} * \mathcal{P}=0 \Longrightarrow \widetilde{\boldsymbol{P}} \theta=0 \\
\Longrightarrow \mathcal{P}=\psi \psi^{\dagger} \\
\text { quaternionic! }
\end{gathered}
$$

Furthermore: $\quad \mathcal{X}^{\dagger}=\mathcal{X} \Longrightarrow \mathcal{X}=\sum_{n=1}^{3} \lambda_{n} \psi_{n} \psi_{n}^{\dagger}$ leptons, mesons, baryons?

DISCUSSION

- 1-squares describe spin/helicity of leptons.
- Three generations of particles (\& sterile neutrino).
- 3+1 space-time emerges from symmetry-breaking.
- Do 2-squares and 3-squares describe mesons and baryons?
- Does broken E_{6} describe standard model?
- Do discrete group transformations yield charge?

Life is complex.

It has real and imaginary parts.

Life is octonionic...

THE END

