Using Octonions

to describe

the Standard Model

Tevian Dray \& Corinne Manogue (joint work with Robert Wilson)

Departments of Mathematics and Physics
Oregon State University

OregonState
 University

(supported by FQXi and the John Templeton Foundation)

With thanks to:

- Rob Wilson, who showed us how to get to E_{8} (in 2014...);
- David Fairlie \& Tony Sudbery, who got us started in the 1980s, Paul Davies, who believed in us from the start, David Griffiths, who taught us physics (and math), and Jim Wheeler, who explained the conformal group to us;
- Jörg Schray (Ph.D. 1994),

Jason Janesky (1997-1998),
Aaron Wangberg (Ph.D. 2007), Henry Gillow-Wiles (M.S. 2008), Joshua Kinkaid (M.S. 2012), Lida Bentz (M.S. 2017), and Alex Putnam (M.S. 2017), who taught us as much as we taught them;

- John Huerta and Susumu Okubo, who helped along the way;
- and FQXi, the John Templeton Foundation, and the Institute for Advanced Study for financial support.

References

This work: arXiv:2204.04996 \& 2204.05310

Our group:

Fairlie \& Manogue (1986, 1987), Manogue \& Sudbery (1989), Schray (PhD 1994), Manogue \& Schray (1993), Dray \& Manogue (1998ab, 1999), Manogue \& Dray (1999), Dray, Janesky, \& Manogue (2000), Dray, Manogue, \& Okubo (2002), Dray \& Manogue (CAA 2000, CMUC 2010), Manogue \& Dray (2010), Wangberg (PhD 2007), Wangberg \& Dray (JMP 2013, JAA 2014), Dray, Manogue, \& Wilson (CMUC 2014), Kincaid (MS 2012), Kincaid and Dray (MPLA 2014), Dray, Huerta, \& Kincaid (LMP 2014)

Others:

Jordan (1933), Jordan, von Neumann, \& Wigner (1934), Freudenthal (1954, 1964), Tits (1966), Vinberg (1966), Gürsey, Ramond, \& Sikivie (1976), Olive \& West (1983), Kugo \& Townsend (1983), Günaydin \& Gürsey (1987), Chung \& Sudbery (1987), Goddard, Nahm, Olive \& Ruegg (1987), Corrigan \& Hollowood (1988), Dixon (1994), Okubo (1995), Günaydin, Koepsell, \& Nicolai (2001), Barton \& Sudbery (2003), Cederwall (2007), Lisi (2007, 2010), Baez \& Huerta (2010), Chester, Marran, \& Rios (2021), Furey (2015), Furey \& Hughes (2022ab)

Division Algebras

Real Numbers

\mathbb{R}

Division Algebras

Real Numbers

\mathbb{R}

Complex Numbers

$$
\begin{gathered}
\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$$
i^{2}=\quad-1
$$

Division Algebras

Real Numbers

\mathbb{R}

Quaternions

$$
\begin{gathered}
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \\
q=(x+y i)+(r+s i) j
\end{gathered}
$$

Complex Numbers

$$
\begin{gathered}
\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$$
i^{2}=j^{2}=\quad-1
$$

Division Algebras

Real Numbers

\mathbb{R}

Quaternions

$$
\begin{gathered}
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \\
q=(x+y i)+(r+s i) j
\end{gathered}
$$

$$
i^{2}=j^{2}=\ell^{2}=-1
$$

Division Algebras

Real Numbers

\mathbb{R}

Quaternions

$$
\begin{gathered}
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \\
q=(x+y i)+(r+s i) j
\end{gathered}
$$

Octonions

$$
\begin{gathered}
\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$\mathbb{O}=\mathbb{H} \oplus \mathbb{H} \ell$
Split Octonions

$$
\mathbb{O}^{\prime}=\mathbb{H} \oplus \mathbb{H} L
$$

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Split Division Algebras

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Signature (4, 4):

$$
\begin{aligned}
& x=x_{1} U+x_{2} I+x_{3} J+x_{4} K+x_{5} K L+x_{6} J L+x_{7} I L+x_{8} L \Longrightarrow \\
& \quad|x|^{2}=x \bar{x}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-\left(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\right)
\end{aligned}
$$

Null elements:

$$
|U \pm L|^{2}=0
$$

Projections:

$$
\begin{aligned}
\left(\frac{U \pm L}{2}\right)^{2} & =\frac{U \pm L}{2} \\
(U+L)(U-L) & =0
\end{aligned}
$$

Lie Groups \& Lie Algebras

Lie Group:

$$
\mathrm{SO}(3)=\left\{R_{z}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right), R_{x}, R_{y}\right\}
$$

Lie Algebra:

$$
\mathfrak{s o}(3)=\left\langle r_{z}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), r_{x}, r_{y}\right\rangle
$$

Properties:

$$
R^{\dagger}=R^{-1}, \quad r_{z}=\left.\frac{d R_{z}}{d \theta}\right|_{\theta=0}, \quad r_{z}^{\dagger}=-r_{z} \quad\left[r_{x}, r_{y}\right]=r_{z}
$$

Classification

Theorem (Cartan-Killing)
 The only (simple) Lie algebras are (real forms of) $\mathfrak{s o}(n), \mathfrak{s u}(n)$, $\mathfrak{s p}(n)$, together with 5 exceptional cases: $\mathfrak{g}_{2}, \mathfrak{f}_{4}, \mathfrak{e}_{6}, \mathfrak{e}_{7}, \mathfrak{e}_{8}$.

These are all unitary algebras!

$$
\begin{aligned}
& \mathfrak{s o}(n) \cong \mathfrak{s u}(n, \mathbb{R}) \\
& \mathfrak{s u}(n) \cong \mathfrak{s u}(n, \mathbb{C}) \\
& \mathfrak{s p}(n) \cong \mathfrak{s u}(n, \mathbb{H})
\end{aligned}
$$

The exceptional cases are matrix algebras involving $\mathbb{(D}$

The Tits-Freudenthal Magic Square

Freudenthal (1964), Tits (1966):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s u}(3, \mathbb{R})$	$\mathfrak{s u}(3, \mathbb{C})$	$\mathfrak{s u}(3, \mathbb{H})$	\mathfrak{f}_{4}
\mathbb{C}^{\prime}	$\mathfrak{s l}(3, \mathbb{R})$	$\mathfrak{s l}(3, \mathbb{C})$	$\mathfrak{s l}(3, \mathbb{H})$	$\mathfrak{e}_{6(-26)}$
\mathbb{H}^{\prime}	$\mathfrak{s p}(6, \mathbb{R})$	$\mathfrak{s u}(3,3, \mathbb{C})$	$\mathfrak{d}_{6(-6)}$	$\mathfrak{e}_{7(-25)}$
\mathbb{O}^{\prime}	$\mathfrak{f}_{4(4)}$	$\mathfrak{e}_{6(2)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(-24)}$

Dray \& Manogue (2010):
$F_{4} \cong \operatorname{SU}(3, \mathbb{O}), E_{6(-26)} \cong \operatorname{SL}(3, \mathbb{O})$ using $\operatorname{SL}(2, \mathbb{O}) \cong \operatorname{Spin}(9,1)$
Dray, Manogue, \& Wilson (2014): $E_{7} \cong \operatorname{Sp}(6, \mathbb{O})$
Wilson, Dray, \& Manogue (2023): $E_{8} \cong S U\left(3, \mathbb{O}^{\prime} \otimes \mathbb{O}\right)$

The algebras in the 3×3 magic square are $\mathfrak{s u}\left(3, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$.

Spinors!

The 3×3 structure is broken to 2×2.

$$
\begin{aligned}
& \mathcal{P}=\left(\begin{array}{cc}
P & \theta \\
\theta^{\dagger} & n
\end{array}\right) \in \mathfrak{e}_{8} \quad \mathcal{M}=\left(\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right) \in E_{8} \\
& \mathcal{P} \longmapsto \mathcal{M P M}^{-1} \quad \Longrightarrow \quad P \longmapsto M P M^{-1}, \theta \longmapsto M \theta \\
& \mathcal{P} \longmapsto[\mathcal{A}, \mathcal{P}] \quad \Longrightarrow \quad P \longmapsto[A, P], \theta \longmapsto A \theta \\
& (\mathcal{A}=\dot{\mathcal{M}} ; \quad A=\dot{M})
\end{aligned}
$$

Idea: Adjoint and spinor actions at same time!

2×2 Magic Square

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s o}(2)$	$\mathfrak{s o}(3)$	$\mathfrak{s o}(5)$	$\mathfrak{s o}(9)$
\mathbb{C}^{\prime}	$\mathfrak{s o}(2,1)$	$\mathfrak{s o}(3,1)$	$\mathfrak{s o}(5,1)$	$\mathfrak{s o}(9,1)$
\mathbb{H}^{\prime}	$\mathfrak{s o}(3,2)$	$\mathfrak{s o}(4,2)$	$\mathfrak{s o}(6,2)$	$\mathfrak{s o}(10,2)$
\mathbb{O}^{\prime}	$\mathfrak{s o}(5,4)$	$\mathfrak{s o}(6,4)$	$\mathfrak{s o}(8,4)$	$\mathfrak{s o}(12,4)$

$$
d=3,4,6,10
$$

(1980s: Corrigan, Evans, Fairlie, Manogue, Sudbery) (1990s: Manogue \& Schray)

Unified Clifford algebra description using division algebras
[Kincaid (MS 2012), Kincaid and Dray (MPLA 2014), Dray, Huerta, \& Kincaid (LMP 2014)]

Signature matters!

Lorentz Lie algebra: $\mathfrak{s o}(3,1) \quad\left[\operatorname{det} P=-\left(-t^{2}+x^{2}+y^{2}+z^{2}\right)\right]$

$$
\begin{aligned}
& P=\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& =t \sigma_{t}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z} \\
& \text { group: } P \longmapsto M P M^{\dagger} \quad \text { algebra: } P \longmapsto A P+P A^{\dagger}
\end{aligned}
$$

Signature matters!

Lorentz Lie algebra: $\mathfrak{s o}(3,1) \quad\left[\operatorname{det} P=-\left(-t^{2}+x^{2}+y^{2}+z^{2}\right)\right]$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
\text { Vector in } \mathbb{C}^{\prime} \oplus \mathbb{C} \\
1 x+i y & L t-U z
\end{array}\right) \\
& =L t \sigma_{t}+1 x \sigma_{x}+i y\left(-i \sigma_{y}\right)+U z \sigma_{z}
\end{aligned}
$$

Rotations (antihermitian!): (so $P \longmapsto[A, P]$)

$$
X_{i}=i \sigma_{x}, \quad X_{1}=i \sigma_{y}, \quad D_{i}=i \sigma_{z}
$$

Boosts (antihermitian!): (so $P \longmapsto[A, P]$)

$$
X_{L}=L \sigma_{x}, \quad X_{i L}=L \sigma_{y}, \quad D_{L}=L \sigma_{z}
$$

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !
- $\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4) \oplus 128$.

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !
- $\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4) \oplus 128$.
- The 128 is a Majorana-Weyl representation of $\mathfrak{s o}(12,4)$.

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !
- $\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4) \oplus 128$.
- The 128 is a Majorana-Weyl representation of $\mathfrak{s o}(12,4)$.
- The 128 contains spinor reps of each 2×2 algebra.

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !
- $\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4) \oplus 128$.
- The 128 is a Majorana-Weyl representation of $\mathfrak{s o}(12,4)$.
- The 128 contains spinor reps of each 2×2 algebra.

$$
\mathfrak{s o}(12,4) \supset \mathfrak{s o}(3,1) \oplus \ldots
$$

The Standard Model

Fermions	Bosons
Leptons (Dirac spinors)	Mediators (Vectors)
$e^{-}, \mu^{-}, \tau^{-} \quad$ charge $=-1$	$\gamma \quad \mathfrak{u}(1)$
$\nu_{e}, \nu_{\mu}, \nu_{\tau} \quad$ charge $=0$	$W^{ \pm}, Z \quad \mathfrak{s u}(2)$
Quarks (Dirac spinors) $u, c, t \quad$ charge $=\frac{2}{3}$ $d, s, b \quad$ charge $=-\frac{1}{3}$	gluons $\quad \mathfrak{s u}(3)$
	Higgs (scalar)

Generations:

3 copies that differ only by mass

Dirac Spinors

- Solutions of the Dirac equation
- Represent leptons and quarks
- Two Weyl spinors of opposite chirality $\left(\mathfrak{s u}(2)_{\mathcal{L}} \oplus \mathfrak{s u}(2)_{R} \cong \mathfrak{s o}(4)\right)$
- $\mathfrak{s u}(2)_{L}$ acts only on one chirality for all fermions

GUTs

Is there a (semi-)simple group that contains $\mathbf{U}(1) \times \mathbf{S U}(2)_{L} \times \mathbf{S U}(3) ?$

Common candidates are $\mathrm{SU}(5)$ and $\mathrm{SO}(10)$.

Lie algebras are real!

The 3×3 structure is broken to 2×2. All representations live in \mathfrak{e}_{8} !

$$
\begin{gathered}
\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4) \oplus \text { spinors } \\
\mathfrak{s o}(12,4) \supset \mathfrak{s o}(3,1) \oplus \mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) " \otimes \mathbb{C}^{\prime \prime}
\end{gathered}
$$

- Manogue, Dray, and Wilson: Octions: An E8 description of the Standard Model, J. Math. Phys. 63, 081703 (2022), arXiv.org:2204.05310
- Wilson, Dray, and Manogue: An octonionic construction of $E_{8} \ldots$, Innov. Incidence Geom. 20, 611-634 (2023). arXiv.org:2204.04996
- Dray, Manogue, and Wilson: A New ... Representation of E_{6}, arXiv.org:2309.00078
- Dray, Manogue, and Wilson: A New ... Representation of E_{7}, (in preparation)

