A Division Algebra Description of the Magic Square, including E_{8}

Tevian Dray

Department of Mathematics
Oregon State University
tevian@math.oregonstate.edu

Corinne Manogue
Department of Physics
Oregon State University
corinne@physics.oregonstate.edu

OregonState University
(supported by FQXi and the John Templeton Foundation)

With thanks to:

- Rob Wilson, who showed us how to get to E_{8} (in 2014...);
- David Fairlie \& Tony Sudbery, who got us started in the 1980s, Paul Davies, who believed in us from the start, David Griffiths, who taught us physics (and math), and Jim Wheeler, who explained the conformal group to us;
- Jörg Schray (Ph.D. 1994),

Jason Janesky (1997-1998),
Aaron Wangberg (Ph.D. 2007), Henry Gillow-Wiles (M.S. 2008), Joshua Kinkaid (M.S. 2012), Lida Bentz (M.S. 2017), and Alex Putnam (M.S. 2017), who taught us as much as we taught them;

- John Huerta and Susumu Okubo, who helped along the way;
- and FQXi, the John Templeton Foundation, and the Institute for Advanced Study for financial support. Lie Algebras

Division Algebras

Real Numbers

\mathbb{R}

Quaternions

$$
\begin{gathered}
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \\
q=(x+y i)+(r+s i) j
\end{gathered}
$$

Octonions

$$
\begin{gathered}
\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$\mathbb{O}=\mathbb{H} \oplus \mathbb{H} \ell$
Split Octonions

$$
\mathbb{O}^{\prime}=\mathbb{H} \oplus \mathbb{H} L
$$

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Split Division Algebras

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Signature (4, 4):

$$
\begin{aligned}
& x=x_{1} U+x_{2} I+x_{3} J+x_{4} K+x_{5} K L+x_{6} J L+x_{7} I L+x_{8} L \Longrightarrow \\
& \quad|x|^{2}=x \bar{x}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-\left(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\right)
\end{aligned}
$$

Null elements:

$$
|U \pm L|^{2}=0
$$

Projections:

$$
\begin{aligned}
\left(\frac{U \pm L}{2}\right)^{2} & =\frac{U \pm L}{2} \\
(U+L)(U-L) & =0
\end{aligned}
$$

The Freudenthal-Tits Magic Square

Freudenthal (1964), Tits (1966):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}	\mathfrak{a}_{1}	\mathfrak{a}_{2}	\mathfrak{c}_{3}	\mathfrak{f}_{4}
\mathbb{C}	\mathfrak{a}_{2}	$\mathfrak{a}_{2} \oplus \mathfrak{a}_{2}$	\mathfrak{a}_{5}	\mathfrak{e}_{6}
\mathbb{H}	\mathfrak{c}_{3}	\mathfrak{a}_{5}	\mathfrak{d}_{6}	\mathfrak{e}_{7}
\mathbb{O}	\mathfrak{f}_{4}	\mathfrak{e}_{6}	\mathfrak{e}_{7}	\mathfrak{e}_{8}

Vinberg (1966):

$$
\begin{aligned}
& \operatorname{sa}(3, \mathbb{A} \otimes \mathbb{B}) \oplus \operatorname{der}(\mathbb{A}) \oplus \operatorname{der}(\mathbb{B}) \\
& \operatorname{der}(\mathbb{H})=\mathfrak{s o}(3) ; \quad \operatorname{der}(\mathbb{O})=\mathfrak{g}_{2}
\end{aligned}
$$

Goal:
Description as symmetry groups
[Barton \& Sudbery (2003), Wangberg (PhD 2007),
Dray \& Manogue (CMUC 2010), Wangberg \& Dray (JMP 2013, JAA 2014),
Dray, Manogue, \& Wilson (CMUC 2014), Wilson, Dray, \& Manogue (2022)]

Guiding Principle \#1

Lie algebras are real!
 (signature matters)
 $\mathfrak{s o}(3,1)$ has boosts and rotations

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s u}(3, \mathbb{R})$	$\mathfrak{s u}(3, \mathbb{C})$	$\mathfrak{s u}(3, \mathbb{H})$	\mathfrak{f}_{4}
\mathbb{C}^{\prime}	$\mathfrak{s l}(3, \mathbb{R})$	$\mathfrak{s l}(3, \mathbb{C})$	$\mathfrak{s l}(3, \mathbb{H})$	$\mathfrak{e}_{6(-26)}$
\mathbb{H}^{\prime}	$\mathfrak{s p}(6, \mathbb{R})$	$\mathfrak{s u}(3,3, \mathbb{C})$	$\mathfrak{d}_{6(-6)}$	$\mathfrak{e}_{7(-25)}$
\mathbb{O}^{\prime}	$\mathfrak{f}_{4(4)}$	$\mathfrak{e}_{6(2)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(-24)}$

The 2×2 Magic Square

Barton \& Sudbery (2003):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}	\mathfrak{d}_{1}	\mathfrak{a}_{1}	\mathfrak{b}_{2}	\mathfrak{b}_{4}
\mathbb{C}	\mathfrak{a}_{1}	$\mathfrak{a}_{1} \oplus \mathfrak{a}_{1}$	\mathfrak{d}_{3}	\mathfrak{d}_{5}
\mathbb{H}	\mathfrak{b}_{2}	\mathfrak{d}_{3}	\mathfrak{d}_{4}	\mathfrak{d}_{6}
\mathbb{O}	\mathfrak{b}_{4}	\mathfrak{d}_{5}	\mathfrak{d}_{6}	\mathfrak{d}_{8}

"Vinberg":

$$
\begin{gathered}
s a(2, \mathbb{A} \otimes \mathbb{B}) \oplus \mathfrak{s o}(\operatorname{Im} \mathbb{A}) \oplus \mathfrak{s o}(\operatorname{Im} \mathbb{B}) \\
\mathfrak{s o}(\operatorname{Im} \mathbb{H})=\mathfrak{s o}(3) ; \quad \mathfrak{s o}(\operatorname{Im} \mathbb{O})=\mathfrak{s o}(7)
\end{gathered}
$$

Unified Clifford algebra description using division algebras
[Kincaid (MS 2012), Kincaid and Dray (MPLA 2014), Dray, Huerta, \& Kincaid (LMP 2014)]

Orthogonal Groups Lie Algebras

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s o}(2)$	$\mathfrak{s o}(3)$	$\mathfrak{s o}(5)$	$\mathfrak{s o}(9)$
\mathbb{C}^{\prime}	$\mathfrak{s o}(2,1)$	$\mathfrak{s o}(3,1)$	$\mathfrak{s o}(5,1)$	$\mathfrak{s o}(9,1)$
\mathbb{H}^{\prime}	$\mathfrak{s o}(3,2)$	$\mathfrak{s o}(4,2)$	$\mathfrak{s o}(6,2)$	$\mathfrak{s o}(10,2)$
\mathbb{O}^{\prime}	$\mathfrak{s o}(5,4)$	$\mathfrak{s o}(6,4)$	$\mathfrak{s o}(8,4)$	$\mathfrak{s o}(12,4)$

$$
d=3,4,6,10
$$

(1980s: Corrigan, Evans, Fairlie, Manogue, Sudbery) (1990s: Manogue \& Schray)

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& =t \sigma_{t}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}
\end{aligned}
$$

group: $P \longmapsto M P M^{\dagger} \quad$ algebra: $P \longmapsto A P+P A^{\dagger}$

$\mathfrak{s o}(\mathbf{3}, \mathbf{1})$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& =t \sigma_{t}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}
\end{aligned}
$$

Rotations (antihermitian!): (so $P \longmapsto[A, P])$

$$
A=i \sigma_{x}, i \sigma_{y}, i \sigma_{z}
$$

Boosts (hermitian!):

$$
\text { (so } P \longmapsto\{A, P\} \text {) }
$$

$$
A=\sigma_{x}, \sigma_{y}, \sigma_{z}
$$

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
\text { Vector in } \mathbb{C}^{\prime} \oplus \mathbb{C} \\
1 x+i y & 1 x-i y \\
& L t-U z
\end{array}\right) \\
& =L t \sigma_{t}+1 x \sigma_{x}+i y\left(-i \sigma_{y}\right)+U z \sigma_{z}
\end{aligned}
$$

Rotations (antihermitian!): \quad (so $P \longmapsto[A, P]$)

$$
A=i \sigma_{x}, i \sigma_{y}, i \sigma_{z}
$$

Boosts (antihermitian!): \quad (so $P \longmapsto[A, P]$)

$$
\begin{aligned}
& X_{L}=L \sigma_{x}, \quad X_{i L}=L \sigma_{y}, \quad D_{L}=L \sigma_{z} \\
& \mathfrak{s o}(3,1) \cong \mathfrak{s l}(2, \mathbb{C}) \cong \mathfrak{s u}\left(2, \mathbb{C}^{\prime} \otimes \mathbb{C}\right)
\end{aligned}
$$

Summary: 2×2 Magic Square

- The algebras in the 2×2 magic square are $\mathfrak{s u}\left(2, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$.
- Each algebra is generated by the 2×2 matrices below, with $p \in \mathbb{K}^{\prime} \otimes \mathbb{K}$ and $q \in \operatorname{Im} \mathbb{K}+\operatorname{Im} \mathbb{K}^{\prime}$.

$$
D_{q}=\left(\begin{array}{cc}
q & 0 \\
0 & -q
\end{array}\right), \quad X_{p}=\left(\begin{array}{cc}
0 & p \\
-\bar{p} & 0
\end{array}\right)
$$

Idea: rotations/boosts acting on $\mathbb{K}^{\prime} \oplus \mathbb{K}$:

$$
D_{i}=D_{1 i} ; D_{L}=D_{U L} ; X_{i}=X_{i U} ; X_{L}=X_{1 L}
$$

- The remaining basis elements are of the form

$$
D_{i, j}=\left(\begin{array}{cc}
i \circ j & 0 \\
0 & i \circ j
\end{array}\right)=\frac{1}{2}\left[D_{i}, D_{j}\right]
$$

where $i \circ j \doteq k$ over \mathbb{H}, but stands for nesting over \mathbb{O}.

The 3×3 Magic Square

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s u}(3, \mathbb{R})$	$\mathfrak{s u}(3, \mathbb{C})$	$\mathfrak{s u}(3, \mathbb{H})$	$\mathfrak{s u}(3, \mathbb{O})$
\mathbb{C}^{\prime}	$\mathfrak{s l}(3, \mathbb{R})$	$\mathfrak{s l}(3, \mathbb{C})$	$\mathfrak{s l}(3, \mathbb{H})$	$\mathfrak{s l}(3, \mathbb{O})$
\mathbb{H}^{\prime}	$\mathfrak{s p}(6, \mathbb{R})$	$\mathfrak{s p}(6, \mathbb{C})$	$\mathfrak{s p}(6, \mathbb{H})$	$\mathfrak{s p}(6, \mathbb{O})$
\mathbb{O}^{\prime}	$? ?$	$? ?$	$? ?$	$? ?$

Dray \& Manogue (2010):
$F_{4} \cong \operatorname{SU}(3, \mathbb{O}), E_{6(-26)} \cong \operatorname{SL}(3, \mathbb{O})$ using $\operatorname{SL}(2, \mathbb{O}) \cong \operatorname{Spin}(9,1)$
Dray, Manogue, \& Wilson (2014): $E_{7} \cong \operatorname{Sp}(6, \mathbb{O})$
Minimal representation of \mathfrak{e}_{8} is adjoint!

Guiding Principle \#2

The 3×3 structure is broken to 2×2.

$$
\begin{aligned}
& \mathcal{P}=\left(\begin{array}{cc}
P & \theta \\
\theta^{\dagger} & n
\end{array}\right) \quad \mathcal{M}=\left(\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right) \\
& \mathcal{P} \longmapsto \mathcal{M} \mathcal{P} \mathcal{M}^{\dagger-1} \Longrightarrow \quad P \longmapsto M P M^{\dagger}, \theta \longmapsto M \theta \\
& \mathcal{P} \longmapsto[\mathcal{A}, \mathcal{P}] \Longrightarrow \quad P \longmapsto[A, P], \theta \longmapsto A \theta
\end{aligned}
$$

Idea: Vector and spinor actions at same time! Example: $\mathcal{M} \in E_{6}, \mathcal{A} \in \mathfrak{e}_{6}, \mathcal{P} \in H_{3}(\mathbb{O})$

Guiding Principle \#2

The 3×3 structure is broken to 2×2.

$$
\begin{gathered}
\mathcal{P}=\left(\begin{array}{cc}
P & \theta \\
-\theta^{\dagger} & n
\end{array}\right) \quad \mathcal{M}=\left(\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right) \\
\mathcal{P} \longmapsto \mathcal{M} \mathcal{P} \mathcal{M}^{\dagger-1} \quad \Longrightarrow \quad P \longmapsto M P M^{\dagger}, \theta \longmapsto M \theta \\
\mathcal{P} \longmapsto[\mathcal{A}, \mathcal{P}] \quad \Longrightarrow \quad P \longmapsto[A, P], \theta \longmapsto A \theta
\end{gathered}
$$

Idea: Vector Adjoint and spinor actions at same time! Example: $\mathcal{M} \in E_{6}, \mathcal{A} \in \mathfrak{e}_{6}, \mathcal{P} \in \mathfrak{e}_{6}$

Summary: $\mathbf{3 \times 3} \mathbf{~ M a g i c ~ S q u a r e ~}$

- The algebras in the 3×3 magic square are $\mathfrak{s u}\left(3, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$.
- Each algebra is generated by the 3×3 matrices below, with $p \in \mathbb{K}^{\prime} \otimes \mathbb{K}$ and $q \in \operatorname{Im} \mathbb{K}+\operatorname{Im} \mathbb{K}^{\prime}$.

$$
\begin{gathered}
D_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & -q & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & p & 0 \\
0 & 0 & -2 q
\end{array}\right), \quad X_{p}=\left(\begin{array}{ccc}
0 & p & 0 \\
-\bar{p} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
Y_{p}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & p \\
0 & -\bar{p} & 0
\end{array}\right), \quad Z_{p}=\left(\begin{array}{ccc}
0 & 0 & -\bar{p} \\
0 & 0 & 0 \\
p & 0 & 0
\end{array}\right)
\end{gathered}
$$

- The remaining basis elements 长 can be chosen to be of the form

$$
D_{i, j}=\left(\begin{array}{ccc}
i \circ j & 0 & 0 \\
0 & i \circ j & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where $i \circ j \doteq k$ over \mathbb{H}, but stands for nesting over \mathbb{O}. TRIALITY!

Commutators

$$
2+1 \Longrightarrow \mathfrak{e}_{8}=\text { adjoint }+ \text { spinors }
$$

Adjoint action (commutators of rotations/boosts):

$$
\begin{aligned}
& \mathfrak{s o}(12,4) \longleftrightarrow X_{q}, D_{p}, D_{p, q} \\
& D_{i}=D_{1 i} ; \quad D_{L}=D_{U L} ; \quad D_{i, j}=D_{i, j} \\
& X_{i}=X_{i U} ; \quad X_{L}=X_{1 L}
\end{aligned}
$$

Example: $\left[D_{i}, X_{1}\right]=\left[D_{1 i}, X_{1 U}\right]=2 X_{i U}=2 X_{i}$
Spinor action (possibly nested matrix multiplication):

$$
\begin{gathered}
\text { spinors } \longleftrightarrow Y_{p}, Z_{q} \\
Y_{p}+Z_{q} \longleftrightarrow\binom{-\bar{q}}{p} \\
\text { Example: }\left[D_{i}, Y_{j}\right]=-Y_{k}
\end{gathered}
$$

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !
- $\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4)+\mathbf{1 2 8}$.
- The $\mathbf{1 2 8}$ is a Majorana-Weyl representation of $\mathfrak{s o}(12,4)$.
- The $\mathbf{1 2 8}$ contains spinor reps of each 2×2 algebra.

Guiding Principle \#3

All representations live in \mathfrak{e}_{8} !

$$
\begin{aligned}
\mathfrak{e}_{8(-24)} & =\mathfrak{s o}(12,4)+\text { spinors } \\
\mathfrak{s o}(12,4) & \supset \mathfrak{s o}(3,1)+\mathfrak{s o}(7,3)+\mathfrak{s o}(2) \\
& \supset \mathfrak{s o}(3,1)+\mathfrak{s o}(4)+\mathfrak{s o}(3,3)+\mathfrak{s o}(2) \\
& \supset \mathfrak{s o}(3,1)+\mathfrak{s u}(2)_{L}+\mathfrak{s u}(2)_{R}+\mathfrak{s u}(3)_{c}+\mathfrak{u}(1)+\mathfrak{s o}(2)
\end{aligned}
$$

SUMMARY

Lie algebras are real!
 The 3×3 structure is broken to 2×2. All representations live in \mathfrak{e}_{8} !

$$
\begin{gathered}
\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4)+\text { spinors } \\
\mathfrak{s o}(12,4) \supset \mathfrak{s o}(3,1)+\mathfrak{s u}(3)+\mathfrak{s u}(2)+\mathfrak{u}(1)
\end{gathered}
$$

Tevian Dray
tevian@math.oregonstate.edu
Corinne Manogue
corinne@physics.oregonstate.edu

