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Division Algebras
Lie Algebras
Real Forms

Division Algebras

Real Numbers

R

Quaternions

H = C⊕ Cj

q = (x + yi) + (r + si)j

k

j i

Complex Numbers

C = R⊕ Ri

z = x + yi

Octonions

O = H⊕Hℓ

Split Octonions

O
′ = H⊕HL k

l
j i

il

kl

jl

i2 = j2 = ℓ2 = − 1I 2 = J2 = −U, L2 = +U
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Division Algebras
Lie Algebras
Real Forms

Split Division Algebras

I 2 = J2 = −U, L2 = +U

Signature (4, 4):
x = x1U + x2I + x3J + x4K + x5KL+ x6JL+ x7IL+ x8L =⇒

|x |2 = xx = (x21 + x22 + x23 + x24 )− (x25 + x26 + x27 + x28 )

Null elements:
|U ± L|2 = 0

Projections:
(

U ± L

2

)2

=
U ± L

2

(U + L)(U − L) = 0
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Division Algebras
Lie Algebras
Real Forms

Overview

e8(−24) = su(3,O′ ×O)
3× 3 matrices

3× 3 7−→ 2× 2 + 2× 1
GUT + spinors

GUT: so(12, 4) ⊃ so(3, 1)⊕ su(3)⊕ su(2)⊕ u(1)⊗ C

Standard Model + Lorentz

Albert algebras ⊂ e8

Next time: Standard Model
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Division Algebras
Lie Algebras
Real Forms

The Freudenthal–Tits Magic Square

Freudenthal (1964), Tits (1966):

R C H O

R a1 a2 c3 f4

C a2 a2 ⊕ a2 a5 e6

H c3 a5 d6 e7

O f4 e6 e7 e8
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Division Algebras
Lie Algebras
Real Forms

Guiding Principle #1

Lie algebras are real!

(signature matters)
so(3, 1) has boosts and rotations

R C H O

R
′ su(3,R) su(3,C) su(3,H) f4

C
′ sl(3,R) sl(3,C) sl(3,H) e6(−26)

H
′ sp(6,R) su(3, 3,C) d6(−6) e7(−25)

O
′ f4(4) e6(2) e7(−5) e8(−24)

[Barton & Sudbery (2003), Wangberg (PhD 2007),

Dray & Manogue (CMUC 2010), Wangberg & Dray (JMP 2013, JAA 2014),

Dray, Manogue, & Wilson (CMUC 2014), Wilson, Dray, & Manogue (2022)]
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The 2 × 2 Magic Square
Clifford Algebras
Basis

The 2 × 2 Magic Square

Barton & Sudbery (2003):

R C H O

R d1 a1 b2 b4

C a1 a1 ⊕ a1 d3 d5

H b2 d3 d4 d6

O b4 d5 d6 d8

Unified Clifford algebra description using division algebras

[Kincaid (MS 2012), Kincaid and Dray (MPLA 2014),

Dray, Huerta, & Kincaid (LMP 2014)]
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The 2 × 2 Magic Square
Clifford Algebras
Basis

Orthogonal Lie Algebras

R C H O

R
′ so(2) so(3) so(5) so(9)

C
′ so(2, 1) so(3, 1) so(5, 1) so(9, 1)

H
′ so(3, 2) so(4, 2) so(6, 2) so(10, 2)

O
′ so(5, 4) so(6, 4) so(8, 4) so(12, 4)

d = 3, 4, 6, 10

(1980s: Corrigan, Evans, Fairlie, Manogue, Sudbery)

(1990s: Manogue & Schray)
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The 2 × 2 Magic Square
Clifford Algebras
Basis

so(3, 1)

P =

(

t + z x − iy

x + iy t − z

)

= t σt + x σx + y σy + z σz

group: P 7−→ MPM† algebra: P 7−→ AP + PA†
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The 2 × 2 Magic Square
Clifford Algebras
Basis

so(3, 1)

P =

(

t + z x − iy

x + iy t − z

)

= t σt + x σx + y σy + z σz

Rotations (antihermitian!): (so P 7−→ [A,P])

A = iσx , iσy , iσz

Boosts (hermitian!): (so P 7−→ {A,P})

A = σx , σy , σz
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The 2 × 2 Magic Square
Clifford Algebras
Basis

so(3, 1)

Vector in C
′ ⊕ C

P =

(

Lt + Uz 1x − iy

1x + iy Lt − Uz

)

= Lt σt + 1x σx + iy (−iσy ) + Uz σz

Rotations (antihermitian!): (so P 7−→ [A,P])

A = iσx , iσy , iσz

Boosts (antihermitian!): (so P 7−→ [A,P])

XL = Lσx , XiL = Lσy , DL = Lσz

so(3, 1) ∼= sl(2,C) ∼= su(2,C′ ⊗ C)
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The 2 × 2 Magic Square
Clifford Algebras
Basis

From Clifford to Lorentz

Flips:
Q 7−→ PQP−1 reflects Q about P.

Double Flips:
Successive flips about P1, P2 result in a (finite)
rotation in the plane spanned by Pi .

The quadratic elements of Cℓ(p, q) generate SO(p, q)
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The 2 × 2 Magic Square
Clifford Algebras
Basis

Nesting

Flips: P 7−→ epPe
−1
p

Nested flips: P 7−→M2

(

M1PM
−1
1

)

M−1
2

where

M1 = −ep I

M2 =
(

ep c(
θ
2 ) + eq s(

θ
2 )
)

I

=

{

(

ep cosh(
θ
2 ) + eq sinh( θ2 )

)

I, (epeq)
2 = 1

(

ep cos(
θ
2 ) + eq sin( θ2 )

)

I, (epeq)
2 = −1

Theorem

The nested flips generate SU(2,K′ ⊗K) ∼= SO(k + 1
2k

′, 12k
′)
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The 2 × 2 Magic Square
Clifford Algebras
Basis

Summary: 2 × 2 Magic Square

The algebras in the 2× 2 magic square are su(2,K′ ⊗K).

Each algebra is generated by the 2× 2 matrices below, with
p ∈ K

′ ⊗K and q ∈ ImK+ ImK
′.

Dq =

(

q 0

0 −q

)

, Xp =

(

0 p

−p 0

)

Idea: rotations/boosts acting on K
′ ⊕ K:

Di = D1i ; DL = DUL; Xi = XiU ; XL = X1L

The remaining basis elements are of the form

Di ,j =

(

i ◦ j 0

0 i ◦ j

)

=
1

2
[Di ,Dj ]

where i ◦ j
.
= k over H, but stands for nesting over O.
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Block Structure
Decompositions
Albert Algebra

Summary: 3 × 3 Magic Square

The algebras in the 3× 3 magic square are su(3,K′ ⊗K).

Each algebra is generated by the 3× 3 matrices below, with
p ∈ K

′ ⊗K and q ∈ ImK+ ImK
′.

Dq =





q 0 0
0 −q 0
0 0 0



 , Sq =

✟
✟

✟
✟
✟
✟
✟❍

❍
❍
❍
❍
❍
❍





q 0 0
0 q 0
0 0 −2q



, Xp =





0 p 0
−p 0 0
0 0 0





Yp =





0 0 0
0 0 p

0 −p 0



 , Zp =





0 0 −p

0 0 0
p 0 0





The remaining basis elements✟✟❍❍are can be chosen to be of the form

Di,j =







i ◦ j 0 0

0 i ◦ j 0

0 0 0







where i ◦ j
.
= k over H, but stands for nesting over O. TRIALITY!
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Block Structure
Decompositions
Albert Algebra

Guiding Principle #2

The 3 × 3 structure is broken to 2 × 2.

P =

(

P θ

θ† n

)

M =

(

M 0

0 1

)

P 7−→MPM†−1 =⇒ P 7−→ MPM†, θ 7−→ Mθ

P 7−→ [A,P] =⇒ P 7−→ [A,P], θ 7−→ Aθ

Idea: Vector and spinor actions at same time!

Example: M ∈ E6, A ∈ e6, P ∈ H3(O)
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Block Structure
Decompositions
Albert Algebra

Guiding Principle #2

The 3 × 3 structure is broken to 2 × 2.

P =

(

P θ

−θ† n

)

M =

(

M 0

0 1

)

P 7−→MPM†−1 =⇒ P 7−→ MPM†, θ 7−→ Mθ

P 7−→ [A,P] =⇒ P 7−→ [A,P], θ 7−→ Aθ

Idea: ✘✘✘❳❳❳Vector Adjoint and spinor actions at same time!

Example: M ∈ E6, A ∈ e6,P ∈ e6
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Block Structure
Decompositions
Albert Algebra

Commutators

2 + 1 =⇒ e8 = adjoint + spinors

Adjoint action (commutators of rotations/boosts):

so(12, 4)←→ Xq,Dp,Dp,q

Di =D1i ; DL = DUL; Di,j = Di,j

Xi =XiU ; XL = X1L

Example: [Di ,X1] = [D1i ,X1U ] = 2XiU = 2Xi

Spinor action (possibly nested matrix multiplication):

spinors←→ Yp,Zq

Yp + Zq ←→

(

−q
p

)

Example: [Di ,Yj ] = −Yk
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Block Structure
Decompositions
Albert Algebra

Subalgebras

All algebras in both magic squares are subalgebras of e8!

e8(−24) = so(12, 4)⊕ 128.

The 128 is a Majorana–Weyl representation of so(12, 4).

The 128 contains spinor reps of each 2× 2 algebra.

Tevian Dray Division Algebra Description of the Magic Square



Introduction
2 × 2 Magic Square
3 × 3 Magic Square

Block Structure
Decompositions
Albert Algebra

Guiding Principle #3

All representations live in e8!

e8(−24) = so(12, 4)⊕ spinors

so(12, 4) ⊃ so(3, 1)⊕ so(7, 3)⊕ so(2)

⊃ so(3, 1)⊕ so(4)⊕ so(3, 3)⊕ so(2)

⊃ so(3, 1)⊕ su(2)L ⊕ su(2)R ⊕ su(3)c ⊕ u(1)⊕ so(2)

so(2) acts as complex structure in enveloping algebra (on spinors);

su(3)c ⊕ u(1) is really sl(3,R)⊕ so(1, 1) ...

... but acts on spinors as su(3)⊕ u(1) using complex structure.
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Block Structure
Decompositions
Albert Algebra

Albert Algebra I

Albert algebra: 3× 3 Hermitian matrices A over O.
The Albert algebra is the minimal representation of e6.

e8(−24) = e6(−26) ⊕ 6× 27⊕ sl(3,R)

The 6 of sl(3,R) are “color labels”: {I ± IL, J ± JL,K ± KL}.

Each 27 of e6 must be an Albert algebra!

(K ± KL)A is anti-Hermitian over O′ ⊗O – and hence in e8!

Over O, (K ± KL)I is nested; really ∼ GK±KL ∈ g′2.

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E6]
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Block Structure
Decompositions
Albert Algebra

Two Subalgebras of O′

{I ± IL, J ± JL,K ∓ KL} ⊂ O
′

These are 3-dimensional subalgebras!

The only nonzero product is (I ± IL)(J ± JL) = 2(K ∓ KL).
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Block Structure
Decompositions
Albert Algebra

Albert Algebra II

Jordan product:

X ◦ Y =
1

2
(XY + YX )

Freudenthal product:

X ∗ Y = X ◦ Y −
1

2

(

(trX )Y + (trY)X
)

+
1

2

(

(trX )(trY)− tr(X ◦ Y)
)

I

Determinant:

det(X ) =
1

3
tr
(

(X ∗ X ) ◦ X
)

Idea: tr(X ◦ Y)←→ X · Y, X ∗ Y ←→ X × Y
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Block Structure
Decompositions
Albert Algebra

Albert Algebra III

“Dot”:

[(K ± KL)X , (I ∓ IL)Y] = tr(X ◦ Y)AJ±JL

“Cross”:

[(I ± IL)X , (J ± JL)Y] = 4 (K ∓ KL)X ∗ Y

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E7]
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Block Structure
Decompositions
Albert Algebra

Albert Algebra and e7

e8 = e7 ⊕ 2× 56⊕ su(2)

e7 is the conformalization of e6, generated by e6, two Albert
algebras, and a dilation.

Each 56 is a minimal representation of e7, generated by two
Albert algebras and two scalars.

The action of e7 on 56 uses the Freudenthal product and the
trace of the Jordan product.

=⇒ These products must be realized as commutators in e8!!
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SUMMARY

Lie algebras are real!
The 3 × 3 structure is broken to 2 × 2.

All representations live in e8!

e8(−24) = so(12, 4)⊕ spinors

so(12, 4) ⊃ so(3, 1)⊕ su(3)⊕ su(2)⊕ u(1)“⊗ C”

Albert algebras ⊂ e8

Wilson, Dray, and Manogue: An octonionic construction of E8 ...,
Innov. Incidence Geom. (in press), arXiv.org:2204.04996

Dray, Manogue, and Wilson: A New ... Representation of E6,
arXiv.org:2309.?????

Dray, Manogue, and Wilson: A New ... Representation of E7,
(in preparation)
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