A Division Algebra Description of the Magic Square, including E_{8}

Tevian Dray

(joint work with Robert Wilson and Corinne Manogue)
Department of Mathematics
Oregon State University
http://www.math.oregonstate.edu/~tevian

OregonState

 University(supported by FQXi and the John Templeton Foundation)

With thanks to:

- Rob Wilson, who showed us how to get to E_{8} (in 2014...);
- David Fairlie \& Tony Sudbery, who got us started in the 1980s, Paul Davies, who believed in us from the start, David Griffiths, who taught us physics (and math), and Jim Wheeler, who explained the conformal group to us;
- Jörg Schray (Ph.D. 1994),

Jason Janesky (1997-1998),
Aaron Wangberg (Ph.D. 2007), Henry Gillow-Wiles (M.S. 2008), Joshua Kinkaid (M.S. 2012), Lida Bentz (M.S. 2017), and Alex Putnam (M.S. 2017), who taught us as much as we taught them;

- John Huerta and Susumu Okubo, who helped along the way;
- and FQXi, the John Templeton Foundation, and the Institute for Advanced Study for financial support. Lie Algebras

Division Algebras

Real Numbers

\mathbb{R}

Quaternions

$$
\begin{gathered}
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \\
q=(x+y i)+(r+s i) j
\end{gathered}
$$

Octonions

$$
\begin{gathered}
\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$\mathbb{O}=\mathbb{H} \oplus \mathbb{H} \ell$
Split Octonions

$$
\mathbb{O}^{\prime}=\mathbb{H} \oplus \mathbb{H} L
$$

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Split Division Algebras

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Signature (4, 4):

$$
\begin{aligned}
& x=x_{1} U+x_{2} I+x_{3} J+x_{4} K+x_{5} K L+x_{6} J L+x_{7} I L+x_{8} L \Longrightarrow \\
& \quad|x|^{2}=x \bar{x}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-\left(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\right)
\end{aligned}
$$

Null elements:

$$
|U \pm L|^{2}=0
$$

Projections:

$$
\begin{aligned}
\left(\frac{U \pm L}{2}\right)^{2} & =\frac{U \pm L}{2} \\
(U+L)(U-L) & =0
\end{aligned}
$$

Overview

- $\mathfrak{e}_{8(-24)}=\mathfrak{s u}\left(3, \mathbb{O}^{\prime} \times \mathbb{O}\right)$ 3×3 matrices
- $3 \times 3 \longmapsto 2 \times 2+2 \times 1$

GUT + spinors

- GUT: $\mathfrak{s o}(12,4) \supset \mathfrak{s o}(3,1) \oplus \mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) \otimes \mathbb{C}$ Standard Model + Lorentz
- Albert algebras $\subset \mathfrak{e}_{8}$

Next time: Standard Model

The Freudenthal-Tits Magic Square

Freudenthal (1964), Tits (1966):

	\mathbb{R}	\mathbb{C}	\mathfrak{H}	\mathbb{O}
\mathbb{R}	\mathfrak{a}_{1}	\mathfrak{a}_{2}	\mathfrak{c}_{3}	\mathfrak{f}_{4}
\mathbb{C}	\mathfrak{a}_{2}	$\mathfrak{a}_{2} \oplus \mathfrak{a}_{2}$	\mathfrak{a}_{5}	\mathfrak{e}_{6}
\mathbb{H}	\mathfrak{c}_{3}	\mathfrak{a}_{5}	\mathfrak{d}_{6}	\mathfrak{e}_{7}
\mathbb{O}	\mathfrak{f}_{4}	\mathfrak{e}_{6}	\mathfrak{e}_{7}	\mathfrak{e}_{8}

Guiding Principle \#1

Lie algebras are real!

(signature matters)
$\mathfrak{s o}(3,1)$ has boosts and rotations

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s u}(3, \mathbb{R})$	$\mathfrak{s u}(3, \mathbb{C})$	$\mathfrak{s u}(3, \mathbb{H})$	\mathfrak{f}_{4}
\mathbb{C}^{\prime}	$\mathfrak{s l}(3, \mathbb{R})$	$\mathfrak{s l}(3, \mathbb{C})$	$\mathfrak{s l}(3, \mathbb{H})$	$\mathfrak{e}_{6(-26)}$
\mathbb{H}^{\prime}	$\mathfrak{s p}(6, \mathbb{R})$	$\mathfrak{s u}(3,3, \mathbb{C})$	$\mathfrak{d}_{6(-6)}$	$\mathfrak{e}_{7(-25)}$
\mathbb{O}^{\prime}	$\mathfrak{f}_{4(4)}$	$\mathfrak{e}_{6(2)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(-24)}$

[Barton \& Sudbery (2003), Wangberg (PhD 2007),
Dray \& Manogue (CMUC 2010), Wangberg \& Dray (JMP 2013, JAA 2014), Dray, Manogue, \& Wilson (CMUC 2014), Wilson, Dray, \& Manogue (2022)]

The 2×2 Magic Square

Barton \& Sudbery (2003):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}	\mathfrak{d}_{1}	\mathfrak{a}_{1}	\mathfrak{b}_{2}	\mathfrak{b}_{4}
\mathbb{C}	\mathfrak{a}_{1}	$\mathfrak{a}_{1} \oplus \mathfrak{a}_{1}$	\mathfrak{d}_{3}	\mathfrak{d}_{5}
\mathbb{H}	\mathfrak{b}_{2}	\mathfrak{d}_{3}	\mathfrak{d}_{4}	\mathfrak{d}_{6}
\mathbb{O}	\mathfrak{b}_{4}	\mathfrak{d}_{5}	\mathfrak{d}_{6}	\mathfrak{d}_{8}

Unified Clifford algebra description using division algebras
[Kincaid (MS 2012), Kincaid and Dray (MPLA 2014),
Dray, Huerta, \& Kincaid (LMP 2014)]

Orthogonal Lie Algebras

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s o}(2)$	$\mathfrak{s o}(3)$	$\mathfrak{s o}(5)$	$\mathfrak{s o}(9)$
\mathbb{C}^{\prime}	$\mathfrak{s o}(2,1)$	$\mathfrak{s o}(3,1)$	$\mathfrak{s o}(5,1)$	$\mathfrak{s o}(9,1)$
\mathbb{H}^{\prime}	$\mathfrak{s o}(3,2)$	$\mathfrak{s o}(4,2)$	$\mathfrak{s o}(6,2)$	$\mathfrak{s o}(10,2)$
\mathbb{O}^{\prime}	$\mathfrak{s o}(5,4)$	$\mathfrak{s o}(6,4)$	$\mathfrak{s o}(8,4)$	$\mathfrak{s o}(12,4)$

$$
d=3,4,6,10
$$

(1980s: Corrigan, Evans, Fairlie, Manogue, Sudbery) (1990s: Manogue \& Schray)

Introduction
2×2 Magic Square
3×3 Magic Square

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& =t \sigma_{t}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}
\end{aligned}
$$

group: $P \longmapsto M P M^{\dagger}$
algebra: $P \longmapsto A P+P A^{\dagger}$

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& =t \sigma_{t}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}
\end{aligned}
$$

Rotations (antihermitian!): (so $P \longmapsto[A, P])$

$$
A=i \sigma_{x}, i \sigma_{y}, i \sigma_{z}
$$

Boosts (hermitian!):

$$
\text { (so } P \longmapsto\{A, P\} \text {) }
$$

$$
A=\sigma_{x}, \sigma_{y}, \sigma_{z}
$$

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
& \text { Vector in } \mathbb{C}^{\prime} \oplus \mathbb{C} \\
& P=\left(\begin{array}{cc}
L t+U z & 1 x-i y \\
1 x+i y & L t-U z
\end{array}\right) \\
&=L t \sigma_{t}+1 x \sigma_{x}+i y\left(-i \sigma_{y}\right)+U z \sigma_{z}
\end{aligned}
$$

Rotations (antihermitian!): \quad (so $P \longmapsto[A, P]$)

$$
A=i \sigma_{x}, i \sigma_{y}, i \sigma_{z}
$$

Boosts (antihermitian!): \quad (so $P \longmapsto[A, P]$)

$$
\begin{aligned}
& X_{L}=L \sigma_{x}, \quad X_{i L}=L \sigma_{y}, \quad D_{L}=L \sigma_{z} \\
& \mathfrak{s o}(3,1) \cong \mathfrak{s l}(2, \mathbb{C}) \cong \mathfrak{s u}\left(2, \mathbb{C}^{\prime} \otimes \mathbb{C}\right)
\end{aligned}
$$

From Clifford to Lorentz

Flips:
$\mathbf{Q} \longmapsto \mathbf{P Q P}^{-1}$ reflects \mathbf{Q} about \mathbf{P}.
Double Flips:
Successive flips about $\mathbf{P}_{1}, \mathbf{P}_{2}$ result in a (finite) rotation in the plane spanned by \mathbf{P}_{i}.

The quadratic elements of $\mathrm{C} \ell(p, q)$ generate $\mathrm{SO}(p, q)$

Nesting

Flips:
Nested flips:

$$
\mathbf{P} \longmapsto e_{p} \mathbf{P} e_{p}^{-1}
$$

$$
\mathbf{P} \longmapsto \mathbf{M}_{2}\left(\mathbf{M}_{1} \mathbf{P} \mathbf{M}_{1}^{-1}\right) \mathbf{M}_{2}^{-1}
$$

where

$$
\begin{aligned}
\mathbf{M}_{1} & =-e_{p} \mathbf{I} \\
\mathbf{M}_{2} & =\left(e_{p} c\left(\frac{\theta}{2}\right)+e_{q} s\left(\frac{\theta}{2}\right)\right) \mathbf{I} \\
& = \begin{cases}\left(e_{p} \cosh \left(\frac{\theta}{2}\right)+e_{q} \sinh \left(\frac{\theta}{2}\right)\right) \mathbf{I}, & \left(e_{p} e_{q}\right)^{2}=1 \\
\left(e_{p} \cos \left(\frac{\theta}{2}\right)+e_{q} \sin \left(\frac{\theta}{2}\right)\right) \mathbf{I}, & \left(e_{p} e_{q}\right)^{2}=-1\end{cases}
\end{aligned}
$$

Theorem

The nested flips generate $S U\left(2, \mathbb{K}^{\prime} \otimes \mathbb{K}\right) \cong S O\left(k+\frac{1}{2} k^{\prime}, \frac{1}{2} k^{\prime}\right)$

Summary: 2×2 Magic Square

- The algebras in the 2×2 magic square are $\mathfrak{s u}\left(2, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$.
- Each algebra is generated by the 2×2 matrices below, with $p \in \mathbb{K}^{\prime} \otimes \mathbb{K}$ and $q \in \operatorname{Im} \mathbb{K}+\operatorname{Im} \mathbb{K}^{\prime}$.

$$
D_{q}=\left(\begin{array}{cc}
q & 0 \\
0 & -q
\end{array}\right), \quad X_{p}=\left(\begin{array}{cc}
0 & p \\
-\bar{p} & 0
\end{array}\right)
$$

Idea: rotations/boosts acting on $\mathbb{K}^{\prime} \oplus \mathbb{K}$:

$$
D_{i}=D_{1 i} ; D_{L}=D_{U L} ; X_{i}=X_{i U} ; X_{L}=X_{1 L}
$$

- The remaining basis elements are of the form

$$
D_{i, j}=\left(\begin{array}{cc}
i \circ j & 0 \\
0 & i \circ j
\end{array}\right)=\frac{1}{2}\left[D_{i}, D_{j}\right]
$$

where $i \circ j \doteq k$ over \mathbb{H}, but stands for nesting over \mathbb{O}.

Summary: $\mathbf{3 \times 3} \mathbf{~ M a g i c ~ S q u a r e ~}$

- The algebras in the 3×3 magic square are $\mathfrak{s u}\left(3, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$.
- Each algebra is generated by the 3×3 matrices below, with $p \in \mathbb{K}^{\prime} \otimes \mathbb{K}$ and $q \in \operatorname{Im} \mathbb{K}+\operatorname{Im} \mathbb{K}^{\prime}$.

$$
\begin{gathered}
D_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & -q & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & p & 0 \\
0 & 0 & -2 q
\end{array}\right), \quad X_{p}=\left(\begin{array}{ccc}
0 & p & 0 \\
-\bar{p} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
Y_{p}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & p \\
0 & -\bar{p} & 0
\end{array}\right), \quad Z_{p}=\left(\begin{array}{ccc}
0 & 0 & -\bar{p} \\
0 & 0 & 0 \\
p & 0 & 0
\end{array}\right)
\end{gathered}
$$

- The remaining basis elements an be chosen to be of the form

$$
D_{i, j}=\left(\begin{array}{ccc}
i \circ j & 0 & 0 \\
0 & i \circ j & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where $i \circ j \doteq k$ over \mathbb{H}, but stands for nesting over \mathbb{O}. TRIALITY!

Guiding Principle \#2

The 3×3 structure is broken to 2×2.

$$
\begin{aligned}
& \mathcal{P}=\left(\begin{array}{cc}
P & \theta \\
\theta^{\dagger} & n
\end{array}\right) \quad \mathcal{M}=\left(\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right) \\
& \mathcal{P} \longmapsto \mathcal{M} \mathcal{P} \mathcal{M}^{\dagger-1} \Longrightarrow \quad P \longmapsto M P M^{\dagger}, \theta \longmapsto M \theta \\
& \mathcal{P} \longmapsto[\mathcal{A}, \mathcal{P}] \Longrightarrow \quad P \longmapsto[A, P], \theta \longmapsto A \theta
\end{aligned}
$$

Idea: Vector and spinor actions at same time! Example: $\mathcal{M} \in E_{6}, \mathcal{A} \in \mathfrak{e}_{6}, \mathcal{P} \in H_{3}(\mathbb{O})$

Guiding Principle \#2

The 3×3 structure is broken to 2×2.

$$
\begin{aligned}
& \mathcal{P}=\left(\begin{array}{cc}
P & \theta \\
-\theta^{\dagger} & n
\end{array}\right) \quad \mathcal{M}=\left(\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right) \\
& \mathcal{P} \longmapsto \mathcal{M} \mathcal{P} \mathcal{M}^{\dagger-1} \Longrightarrow \quad P \longmapsto M P M^{\dagger}, \theta \longmapsto M \theta \\
& \mathcal{P} \longmapsto[\mathcal{A}, \mathcal{P}] \Longrightarrow \quad P \longmapsto[A, P], \theta \longmapsto A \theta
\end{aligned}
$$

Idea: Vector Adjoint and spinor actions at same time! Example: $\mathcal{M} \in E_{6}, \mathcal{A} \in \mathfrak{e}_{6}, \mathcal{P} \in \mathfrak{e}_{6}$

Commutators

$$
2+1 \Longrightarrow \mathfrak{e}_{8}=\text { adjoint }+ \text { spinors }
$$

Adjoint action (commutators of rotations/boosts):

$$
\begin{aligned}
\mathfrak{s o}(12,4) & \longleftrightarrow X_{q}, D_{p}, D_{p, q} \\
D_{i}=D_{1 i} ; \quad D_{L} & =D_{U L} ; \quad D_{i, j}=D_{i, j} \\
X_{i}=X_{i U} ; \quad X_{L} & =X_{1 L}
\end{aligned}
$$

Example: $\left[D_{i}, X_{1}\right]=\left[D_{1 i}, X_{1 U}\right]=2 X_{i U}=2 X_{i}$
Spinor action (possibly nested matrix multiplication):

$$
\begin{aligned}
& \text { spinors } \longleftrightarrow Y_{p}, Z_{q} \\
& Y_{p}+Z_{q} \longleftrightarrow\binom{-\bar{q}}{p}
\end{aligned}
$$

Example: $\left[D_{i}, Y_{j}\right]=-Y_{k}$

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !
- $\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4) \oplus 128$.
- The $\mathbf{1 2 8}$ is a Majorana-Weyl representation of $\mathfrak{s o}(12,4)$.
- The $\mathbf{1 2 8}$ contains spinor reps of each 2×2 algebra.

Guiding Principle \#3

All representations live in \mathfrak{e}_{8} !

$$
\begin{aligned}
\mathfrak{e}_{8(-24)} & =\mathfrak{s o}(12,4) \oplus \text { spinors } \\
\mathfrak{s o}(12,4) & \supset \mathfrak{s o}(3,1) \oplus \mathfrak{s o}(7,3) \oplus \mathfrak{s o}(2) \\
& \supset \mathfrak{s o}(3,1) \oplus \mathfrak{s o}(4) \oplus \mathfrak{s o}(3,3) \oplus \mathfrak{s o}(2) \\
& \supset \mathfrak{s o}(3,1) \oplus \mathfrak{s u}(2)_{L} \oplus \mathfrak{s u}(2)_{R} \oplus \mathfrak{s u}(3)_{c} \oplus \mathfrak{u}(1) \oplus \mathfrak{s o}(2)
\end{aligned}
$$

- $\mathfrak{s o}(2)$ acts as complex structure in enveloping algebra (on spinors);
- $\mathfrak{s u}(3)_{c} \oplus \mathfrak{u}(1)$ is really $\mathfrak{s l}(3, \mathbb{R}) \oplus \mathfrak{s o}(1,1) \ldots$
- ... but acts on spinors as $\mathfrak{s u}(3) \oplus \mathfrak{u}(1)$ using complex structure.

Albert Algebra I

Albert algebra: 3×3 Hermitian matrices \mathcal{A} over \mathbb{O}.
The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

$$
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{6(-26)} \oplus 6 \times \mathbf{2 7} \oplus \mathfrak{s l}(3, \mathbb{R})
$$

- The 6 of $\mathfrak{s l}(3, \mathbb{R})$ are "color labels": $\{I \pm I L, J \pm J L, K \pm K L\}$.
- Each 27 of \mathfrak{e}_{6} must be an Albert algebra!
- $(K \pm K L) \mathcal{A}$ is anti-Hermitian over $\mathbb{O}^{\prime} \otimes \mathbb{O}$ - and hence in \mathfrak{e}_{8} !
- Over $\mathbb{O},(K \pm K L) \mathcal{I}$ is nested; really $\sim G_{K \pm K L} \in \mathfrak{g}_{2}^{\prime}$.
[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{6}]

Two Subalgebras of \mathbb{O}^{\prime}

$$
\{I \pm I L, J \pm J L, K \mp K L\} \subset \mathbb{O}^{\prime}
$$

- These are 3-dimensional subalgebras!
- The only nonzero product is $(I \pm I L)(J \pm J L)=2(K \mp K L)$.

Albert Algebra II

Jordan product:

$$
\mathcal{X} \circ \mathcal{Y}=\frac{1}{2}(\mathcal{X} \mathcal{Y}+\mathcal{Y} \mathcal{X})
$$

Freudenthal product:

$$
\begin{aligned}
\mathcal{X} * \mathcal{Y}=\mathcal{X} \circ \mathcal{Y} & -\frac{1}{2}((\operatorname{tr} \mathcal{X}) \mathcal{Y}+(\operatorname{tr} \mathcal{Y}) \mathcal{X}) \\
& +\frac{1}{2}((\operatorname{tr} \mathcal{X})(\operatorname{tr} \mathcal{Y})-\operatorname{tr}(\mathcal{X} \circ \mathcal{Y})) \mathcal{I}
\end{aligned}
$$

Determinant:

$$
\operatorname{det}(\mathcal{X})=\frac{1}{3} \operatorname{tr}((\mathcal{X} * \mathcal{X}) \circ \mathcal{X})
$$

Idea:

$$
\operatorname{tr}(\mathcal{X} \circ \mathcal{Y}) \longleftrightarrow \mathcal{X} \cdot \mathcal{Y}, \quad \mathcal{X} * \mathcal{Y} \longleftrightarrow \mathcal{X} \times \mathcal{Y}
$$

Albert Algebra III

"Dot":

$$
[(K \pm K L) \mathcal{X},(I \mp I L) \mathcal{Y}]=\operatorname{tr}(\mathcal{X} \circ \mathcal{Y}) A_{J \pm J L}
$$

"Cross":

$$
[(I \pm I L) \mathcal{X},(J \pm J L) \mathcal{Y}]=4(K \mp K L) \mathcal{X} * \mathcal{Y}
$$

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{7}]

Albert Algebra and \mathfrak{e}_{7}

- $\mathfrak{e}_{8}=\mathfrak{e}_{7} \oplus 2 \times \mathbf{5 6} \oplus \mathfrak{s u}(2)$
- \mathfrak{e}_{7} is the conformalization of \mathfrak{e}_{6}, generated by \mathfrak{e}_{6}, two Albert algebras, and a dilation.
- Each 56 is a minimal representation of \mathfrak{e}_{7}, generated by two Albert algebras and two scalars.
- The action of \mathfrak{e}_{7} on 56 uses the Freudenthal product and the trace of the Jordan product.
\Longrightarrow These products must be realized as commutators in \mathfrak{e}_{8} !!

SUMMARY

Lie algebras are real!
 The 3×3 structure is broken to 2×2. All representations live in \mathfrak{e}_{8} !

$$
\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4) \oplus \text { spinors }
$$

$$
\mathfrak{s o}(12,4) \supset \mathfrak{s o}(3,1) \oplus \mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) " \otimes \mathbb{C}^{\prime \prime}
$$

Albert algebras $\subset \mathfrak{e}_{8}$

- Wilson, Dray, and Manogue: An octonionic construction of E_{8}..., Innov. Incidence Geom. (in press), arXiv.org:2204.04996
- Dray, Manogue, and Wilson: A New ... Representation of E_{6}, arXiv.org:2309.?????
- Dray, Manogue, and Wilson: A New ... Representation of E_{7}, (in preparation)

